

RAPID PLANNING

SUSTAINABLE INFRASTRUCTURE, ENVIRONMENTAL AND RESOURCE MANAGEMENT FOR HIGHLY DYNAMIC METROPOLISES

Rapid Planning Results for Kigali November 12-14th 2019

Introduction

UNHABITAT, ifeu

Duration 2014-2019 Funded by German Ministry of Education and Research BMBF

Development and testing of a rapid trans-sectoral and integrated planning methodology for regional resource management and supply & disposal infrastructure

→ strategic pre-planning

© Felix Bachofer, DLR/Uni Tübingen

© ifeu Heidelberg

THE RAPID PLANNING PROJECT TEAM

AT

AT-Association, association for the promotion of socially & environmentally appropriate technologies e.V.	b-tu Brandenburgische Technische Universität (BTU) Cottbus Brandenburg University of Technology Cottbus
Fachhochschule Frankfurt am Main – University of Applied Sciences FFin / Frankfurt Research Institute for	Institut für Automation und Kommunikation e. V. (ifak), Magdeburg
Architecture · Civil Engineering · Geomatics OF APPLIED SCIENCES	
ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH Institute for Energy and Environmental Research (IFEU)	
IZES gGmbH – Institut für ZukunftsEnergieSysteme Institute for Future Energy Systems	Ostfalia University of Applied Sciences, Campus Suderburg
Technische Universität Berlin (TU Berlin) School VI. Planning Building Environment Dept. of Landscape Architecture and Environmental Planning Chair of Landscape Architecture. Open Space Planning	University of Stuttgart Institute of Energy Economics and the Rational Use of Energy (IER)
Eberhard Karls Universität Tübingen Faculty of Science, Department of Geosciences Chair of Geoinformatics	The United Nations Human Settlements Programme – UN HABITAT

Session 1

KNOW THE FLOWS

IER • Uni Tübingen • ifeu

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Building Types

RAPID PLANNING

d description of the second second

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

The basemap is a RapidEye image acquired on 14.07.2015

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geography Version: 10/2019

SPONSORED BY THE

EBERHARD KARLS UNIVERSITAT TÜBINGEN

P

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Urban Structure Types (USTs)

30°4'0"E 30°6'0"E 30°10'0"E 30°2'0"F 30°8'0" Gasabo Nyarugenge Kicukiro

RAPID PLANNING

d description of the second second

EBERHARD KARLS UNIVERSITAT TUBINGEN

P

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

The basemap illustrating Rwandas topography is a hillshaded representation of a digital elevation model (DEM)

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geography Version: 10/2019

SPONSORED BY THE

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Building morphology – neighbourhood types

RAPID PLANNING

dilutrialization along and

Row houses

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

The basemap is a Pléiades image acquired on 14.07.2015

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geography Version: 10/2019

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Aggregated building statistics, e.g. villas-type buildings

RAPID PLANNING

d describes

Legend

EBERHARD KARLS UNIVERSITAT TUBINGEN

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

The basemap is a RapidEye image acquired on 14.07.2015

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geography Version: 10/2019

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Socio-economic conditions

Legend

RAPID PLANNING

Average socio-economic points (SEPs) per building block [residential only] EBERHARD KARLS UNIVERSITAT TUBINGEN

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

Socio-economic points were assessed by household surveys conducted by IUWA at the marked points and upscaled by the University of Tuebingen (Deliverable 2.11)

The basemap is a RapidEye image acquired on $14.07.2015 \end{tabular}$

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geographie Version: 10/2019 SPONSORED BY THE

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Spatial indicators, natural: vegetation

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

The basemap illustrating Rwandas topography is a hillshaded representation of a digital elevation model (DEM)

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geography Version: 10/2019

SPONSORED BY THE

SPATIALLY RESOLVED RESULTS - **KIGALI STATUS QUO** Spatial indicators, urban: built-up area

d de cristi

Legend

Ground Space Index (GSI) Fractional built-up area EBERHARD KARLS UNIVERSITAT TUBINGEN

P

Administrative boundaries: The province of Kigali is divided into 3 districts, The boundaries are provided by the Rwanda Natural Resource Authority (RNRA).

The basemap illustrating Rwandas topography is a hillshaded representation of a digital elevation model (DEM)

This map was compiled for Rapid Planning

Author: Dr. Andreas Braun University of Tuebingen Department of Geography Version: 10/2019

SPONSORED BY THE

SPATIALLY RESOLVED RESULTS - KIGALI STATUS QUO HOUSEHOLDS: EXAMPLES ON CONSUMPTION AND GENERATION PATTERNS

RAPID PLANNING www.rapid-planning.net

SPATIALLY RESOLVED RESULTS - KIGALI STATUS QUO PUBLIC AND COMMERCE: EXAMPLES ON CONSUMPTION AND GENERATION PATTERNS

WATER & WASTEWATER Sector

RAPID PLANNING

Long Hall

© Rapid Planning - ifeu Heidelberg

• 1feu

WATER & WASTEWATER Sector ZOOM

ENERGY Sector

FOOD Sector

RAPID PLANNING

المتنا المعلة

• 1feu

SOLID WASTE Sector

RAPID PLANNING

diterrial.

Long Halls

© Rapid Planning - ifeu Heidelberg

• 1feu

Session 2

KNOW THE TECHNIQUES

IER • Uni Tübingen • IUWA • ifak

1. Identification and Classification of Building Types reference data collection and object remote sensing building types, correlation building type + testing areas socio-economic category 2. Determination of Socio-Economic Categories socio-economic data gathering (surveys) correlation socio-economic category/ socio-economically homogenous areas building type + specific data 3. Specific Data Gathering on Household Level determination of consumption/generation patterns (energy/water/food/waste/wastewater)

RAPID PLANNING TECHNIQUES

Manual on the use of spatial data and satellite images

The	Rapid Planning Project	4
Obje	ective and structure of this document	5
Rela	ted documents	5
1	Structure of data collection within Rapid Planning	7
1.1	Definition of a building typology and field data collection	7
1.2	Identification and classification of buildings	9
1.3	Classification of urban structure types	11
1.4	Linking building types and USTs to statistical data	12
2	Data used and generated within Rapid Planning	13
2.1	Primary sources	13
2.2	Generated data	14
2.3	Web-based GIS data warehouse	21
3	Practical recommendations	24
3.1	Acquisition and ordering of VHR images	24
3.2	Sources of freely available HR images	30
3.3	Pre-processing of images	31
3.4	Image analysis	33
3.5	Post-processing	37
3.6	Software	39
4	Official publications of Rapid Planning	45
4.1	Building heights of Kigali	45
4.2	Identification of roof materials in Kigali	45
4.3	Changes at the building level between 2008 and 2015	46
5	Current related research on Kigali	47
5.1	Land use and physical characteristics of Kigali	48
5.2	Urban growth	49
5.3	Socio-economy	50
Lite	rature	51
Арр	endix A: Building Typology	52
Арр	endix B: Urban Structure Types in Kigali	63

- 60 pages with numerous illustrations •
- **Results of Rapid Planning** •

RAPID PLANNING

www.rapid-planning.net

- Spatial datasets of Kigali •
- Definitions and typologies
 - Building Types
 - Urban Structure Types
- Manual on their use, updating and continuation ۲
- Recommendations on the work with satellite images

FRERHARD KARL

UNIVERSITAT

1.

• Large literature section and references on external resources

RAPID PLANNING TECHNIQUES Building typology (part of the manual)

Redimentary, basic or unplanned buildings are the predominant building type in Kigali. This type is a low

rise building with 1 floor. It is abundant in densely built-up areas and rural areas. It is constructed of basic

The second se

Man. area (m1

The building class "Building in block structure, large courty and buildings" consists of donse buildings around

the perimeter of a block, with one to three floors, typically higher quality than 'rudimentary' buildings, and

the permaners at a block, will not to three iteors, typically higher quality than "tubinentary buillings, and including denotely buillings converted buildings. The case as imports of this class as itegyly an experi-based denotes on the basis of the constellations of neighboring buildings. The roots are fit aroots are single above roots with mostal shorts (including corrugated metal). Distinguishing this typelagy from densely built-up informal asticaments and halls a difficult. The class is predominantly found in the CED or in neural areas with a high

Mas: area (m²)

120

Min. height (m) Man. height (n

Min. height (m) Man. height (m)

Rudimentary, basic or unplanned buildings

Min. area (m³)

Building in block structure/large courtyard buildings

Min. area (m²)

Code Sh

Brain

ence Pict

read network density

Code Short-name

Elock

Reference Pieture

RAPID PLANNING TECHNIQUES Rapid Planning web-based GIS data warehouse

RAPID PLANNING

www.rapid-planning.net

EBERHARD KARLS

UNIVERSITAT

1.

RAPID PLANNING TECHNIQUES SURVEY: Digital Questionnaire (CAPI*)

*Computer Assisted Personal Interviewing

8

FRERHARD VARIS

UNIVERSITAT

TUBINGEN

www.rapid-planning.net

RAPID PLANNING

RAPID PLANNIN Manual for socio	G TECHNIQUES o economic household survey Kigali	RAPID PLANNING www.rapid-planning.net
 Developm socio-eco 	ent of a questionnaire for the nomic household survey	P RAPID PLANNING
On-site ch	neck of preselected test areas	S Questionnaire Kigali 2016 <u>1 Housing and infrastructure</u> <u>1.1 Housetype</u> I.1.1 Please select the housetype
Conduction	on of survey in the test areas	incline type of floors 1.2 Number of floors 1.2.2 Number of households in the house
Derivation	of socio-economic categories	I.2.3 Number of units (Number of flats, shops, bureaus, etc.) I.2.4 Number of different uses (e.g.: residential, office, shop, etc.) I.2.5 Overall size of the plat (m²)
Analyses	of the gathered survey data	1.2.6 Footarint of the house (ground area, m ²) 1.2.7 Access to the structure Fourpath O Read O 1.3 Property 1.3.1 Property of the house or flat
Linking SI	EC to building types (BT)	version Qversion Q1.4 Size and total number of rooms in your house/ flat1.4.1 Overall size of the flat (space available for the formily, m ²)1.4.2 BedroomsNorma 0 1 0 2 0 3 0 4 0 5 0 >5 0Name 0 1 0 2 0 3 0 4 0 5 0 >5 01.4.3 Living roomsName 0 1 0 2 0 3 0 4 0 5 0 >5 01.4.4 BathroomsName 0 1 0 2 0 3 0 4 0 5 0 >5 01.4.5 Kitchen insideName 0 1 0 2 0 3 0 4 0 5 0 >5 01.4.6 Other roomsName 0 1 0 2 0 3 0 4 0 5 0 >5 01.4.6 Other roomsName 0 1 0 2 0 3 0 4 0 5 0 >5 0

RAPID PLANNING TECHNIQUES

Average of socio-economic points in the different test areas Kigali with associated Socio-economic categories

RAPID PLANNING

IUWA 2.

RAPID PLANNING TECHNIQUES

Linking socio-economic category (SEC) with building type (BT)

Building Type (BT 1)

Building Type (BT 2)

no image rights

Source OSM under the Open Database License: <u>http://opendatacommons.org/licenses/odbl/1.0/</u>. Any rights in individual contents of the database are licensed under the Database Contents License: <u>http://opendatacommons.org/licenses/dbcl/1.0/</u> and Aster NASA Elevation model made with Data from NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2017 from <u>https://doi.org/10.5067/ASTER/ASTGTM.003</u>

RAPID PLANNING TECHNIQUES SURVEY: Digital Questionnaire (CAPI*)

	8 al 59% 14:13	2 A 59%	14:12		ē,	d 61%	13:38
ODK Collect > Fill Bl	ank Form	ODK Collect > Main Menu	1	ODK Collect >	B	Ø,	Ŧ
Finished scanning. All forms loa	ded.	ODK Collect 1.4.10 (1061)		Imiterere v'ibikores	hwa m	u nao	mu
Household Survey Added on Fri, Nov 20, 2015 at 0	9:02	Data collection made easier	ŝ	Mujyi wa Kigali, Rw (Consumption patte	anda erns in	the	
Public and Commerce Added on Sun, Nov 15, 2015 at 2	ce Survey	Fill Blank Form		residential sector in	n Kigal	i, Rwa	nda)
Sector specific surver residential sector in Nang_English versio	ey in the Da n	Edit Saved Form (1)	-				
Sector specific surve	ev in the	Send Finalized Form (3)					
residential sector in Da			1	no image ri	ights		
Nang_Vietnam versi Added on Sun, Mar 06, 2016 at 0	on 00:00	Get Blank Form					
Sector specific surve residential sector in Kigali_Rwandan vers Added on Sun, Nov 22, 2015 et 3	ey in the sion	Delete Saved Form	1				

Survey

Added on Sun. Nov 15, 2015 at 20.40

Block rono tuno	LICT tumo	Life stule slass	Building type					Acronum
Block zone type	USIType	Life Style class	Rudimentary	Bungalow	Villa	Apartment	Total	Acronym
Commercial	Compact/mid	mid	46	25	0	0	71	CCMM
	Compact/mid	high	0	51	13	3	67	CCMH
	Compact/small	low	171	0	0	0	171	CCSL
	Compact/small	mid	0	30	0	0	30	CCSM
	Open	high	8	9	4	0	21	СОН
Urban	Compact/mid	mid	1	19	20	0	40	UCMM
	Compact/mid	mid to high	1	9	30	0	40	UCMMH
	Compact/mid	high	0	26	14	0	40	UCMH
	Compact/small	low	44	9	0	0	53	UCSL
	Open	low	8	0	2	0	10	UOL
	Open	mid	0	2	6	0	8	UOM
Rural	Open	low	88	4	0	0	92	ROL
	Sparsely built	low	78	7	0	0	85	RSL
TOTAL			445	191	89	3	728	

Geographics, CNES/Airbus DS, GeoEye, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community

RAPID PLANNING TECHNIQUES Field measurement (solid waste) & inventory list (food)

					<u> </u>
RAF	PID PLANNING Iga-Janonguni		and an in the		
1.	Surveyor (name):	sidential se	ector in Ki	gall, Kwanda	
2.	Household numeration/GPS Position:				
3	Address:				
4.	How many people live in this household?	Total;	Adults;	Children (<16 y)	
5.	Date: / /2016				
6	How much of the following food items wer	e ourchased for	your househo	Id today?	
	(be as precise as possible, if you can't say anyti	ning about the am	ount write "?"	or another unit)	
		ka			
	Roots / tubers	NB			
		ke or	niecels		
	Vegetables & salad	kg or	piece(s	5	
	Dairy products	kg or	litre(s)		
	Fresh meat and meat products	kg			
	Fish	kg or	piece(s)	
	Eggs	piece(s)			
	Fats / oils	kg			
	Nuts	kg			
	Pulses	kg			
	Convenience food (e.g. cans)	kg or	piece(s)	
	Soft drinks & juices	litres			
	Water bottles	litres or	bottles	Bottle size: lit	re)
	Other Beverages (e.g. tea, coffee)	litres			

9. How often do you buy oil? _____; Size of bottle _____litre
RAPID PLANNING TECHNIQUES DATA SHEETS & MANUAL: DELIVERABLE REPORTS

Building type		Household size [#]	Electricity consumption [kWh/(a*cap)]	Charcoal consumption [kWh/(a*cap)]	LPG consumptio n [kWh/(a*cap)]	Water consumption [litre/(d*cap)]	Wastewater generation [litre/(d*cap)]
Rudimentary	N Valid	445	379	170	12	443	443
	Missing	0	66	275	433	2	2
	Mean	5,12	59,82	1148,67	312,47	24,25	19,40
	Std. Error of Mean	,10	5,11	53,95	84,60	1,42	1,14
	Median	5,00	40,91	966,72	200,28	15,47	12,38
	Std. Deviation	2,21	99,48	703,41	293,08	29,94	23,95
	Variance	4,87	9896,08	494790,20	85893,06	896,49	573,75
	Range	11,00	1298,99	4501,47	1091,49	251,84	201,47
	Minimum	1,00	4,79	332,13	51,51	,67	,53
	Maximum	12,00	1303,78	4833,60	1143,00	252,51	202,01
Bungalow	N Valid	191	189	45	94	191	191
	Missing	0	2	146	97	0	0
	Mean	5,33	410,09	1235,86	611,68	103,20	82,56
	Std. Error of Mean	,18	44,00	73,95	63,32	10,61	8,49
	Median	5,00	223,51	1208,40	437,33	42,08	33,67
	Std. Deviation	2,49	604,94	496,05	613,93	146,70	117,36
	Variance						

RAPID PLANNING

A second states

Institute for Energy Economics and Rational Energy Use

VING

SECTOR RELATED DATA SETS ON CONSUMPTION AND GENERATION FOR PUBLIC IN-STITUTIONS, COMMERCE AND SERVICE INDUSTRIES IN THE CASE CITIES

Data generation and analysis at the public

University of Stuttgart

Task 3.3

RAPID PLANNING

and commerce level

Index of Tables	
Index of Figures.	
1 Data generation	1
2 Data analysis	4
2.1 Case city Kigali, Rwanda	4
2.2 Case city Da Nang, Vietnam	17
2.3 Case city Assiut, Egypt	17

IER

Scenario simulation – How to do it? Embedded in the "Rapid Planning" Methodology

Rapid Planning provides ...

Scenario simulation – How to do it? Build a model of your city

Simulator Modules as illustrated in Process Chains

RAPID PLANNING TECHNIQUES RP SCENARIO SIMULATOR: TRANS-SECTORAL TECHNOLOGIES

RP-Simulator: Modelling modules Example: Module "Constructed Wetland"

RAPID PLANNING TECHNIQUES RP SCENARIO SIMULATOR : TRANS-SECTORAL TECHNOLOGIES

RP-Simulator: Modelling modules Example: Module "Composting Plant"

RAPID PLANNING SCENARIO SIMULATION MODULES

RAPID PLANNING

© TU Berlin

© TU Berlin

Primary Agriculture - wetlands

Scenario simulation – How to do it? Build a model of your city SIMBA# 01_TRANSSECTORAL_Nyarugenge_20190605_X * n X File Edit Tools Parameter Simulation Help User Current run * K 4 4 0d 00:00:00 * * * + 🚍 🕂 Defaul 🕶 🛃 360 🕨 360 No LA Console Results Blocks -2.214771° 30.307143° Global Wastewater Sewer Supply ICA & Signal Aeration Pipe flow Energy Biogas River Spatial unit ▲ Waste sector ▲ Waste treatment O Parameter block Nyarugenge Kimisaga Parameter Ressource Parameter WTP and the second second ceDistances Apartment Bungalow Rudimentary Villa RowHouse OtherParameter Number of persons living in this building type (Apartment_Nhumans) 69766 Number of households of this building type (Apartment Nihouseholds) 31712 22 AV Percentage of area of this building type (Apartment PArea) 0 15 food demand Composting plant Beverage and spice crops demand (Apartment PopulationFoodCategoriesFoodBeverageSpiceCrops) 0 kg/cap/d Cereals demand (Apartment_PopulationFoodCategoriesFoodCereals) 0.14 kg/cap/d ctricalEnergyConsume on ProcessChain1 ProcessChain2 Plot Plot0 Plot1 Plot2 Nyarugenge Food consumption Plot4 **(**+~) **(**+∎ Dairy demand (Apartment_PopulationFoodCategoriesFoodDairy) 0.13 kp/cap/d Fish and seafood demand (Apartment PopulationFoodCategoriesFoodFishSeafood) 0.03 kg/cap/d + 9 × Fluit and vegetables demand (Apartment PopulationFoodCategorietFoodFluitVegetables) 0.51 kg/cap/d Landfi Industrial crops demand (Apartment PopulationFoodCategoriesFoodIndustrialCrops) 0.03 kg/cap/d Meat demand (Apartment PopulationFoodCategoriesFoodMeat) 0.07 kg/cap/d Water Spartment, WTab, WWToSever MAN File Percent of population connected to a cource/infrastructure (Water Apartment, WTab, WWToSever, Puse) 80 15 Return spefficient (Water Apartment WTab, WWToSever, Preturn) 50 15 300 Water demand per capita Water Apartment WTab WWToSever Owater) 120 l/cip/d Water Apertment, Wilab Sepilank Percent of population connected to a source/infrastructure (Water_Apartment_WTab_SepTank_Puse) 20 194 000 Return coefficient (Water Apartment WTab SepTank Preturn) 80 1 MAN Water demand for Bushing toilet (per capital) (Water Apartment WTab SepTank QwaterBW) 20 Vcan/d Water demand for other uses (per cepita) (Water Apartment WTab SepTank QwaterGW) 100 l/cap/d 200 61 62 63 64 66 67 69 70 65 [d] SortingFacility Separat Percent of population connected to a energy cource/infrastructure (Electricity_Aparoment_Puse)/100 15 Electrical energy consumption per capita (Electricity, Apartment, Persengy) 137

Scenario simulation for Kigali Characteristics of the Rapid Planning Simulator

- Managing availability demand
- State-of-the-art algebraic and dynamic solvers
- High degree of flexibility, subsystems
- Some graphics, data export to Excel
- Compatible to water simulator Simba#
- (time series, process dynamics)
- Freely definable parameters for resource consumption, efficiencies, cost functions, ...
- Links process modelling with Life Cycle Analysis
- Calculation of many criteria (GHG, ...)
- Applicable to any city

Scenario simulation for Kigali: Results

Here: Trans-sectoral scenario

Session 3

SIMULATE THE URBAN FUTURE

TU Berlin • ifak • ifeu

WHY SCENARIO SIMULATION?

guideline for Rapid Planning

assess how rapidly growing cities might develop under a range of plausible futures

- applying a trans-sectoral approach to optimise infrastructure planning for a resource efficient management
- generate trans-sectoral linkages and harness potential synergies between infrastructure sectors and urban development
- allowing for flexible adjusting to urban development challenges and needs

pumping/treating water are not shown in this figure

© ifak, ifeu, TUB

SCENARIO SIMULATION SCENARIO DEFINITION

Status quo based on current state

Reference scenario

Kigali + Nyarugenge Masterplans + sectoral development plans

- based on general parameters, e.g. population growth, urbanization, consumption/demand patterns
- based on goals and parameters of existing masterplans and strategic sectoral plans

Trans-sectoral scenario(s)

- based on same general parameters may deviate in some cases
- in addition, sectoral optimization and trans-sectoral interlinkages with resulting synergies
- developing scenarios for context-specific cases

GOAL: revealing potential effects of applying trans-sectoral planning:

- possible to achieve an optimized resource management by harnessing synergies?
- what are the effects on urban quality, climate related and economic aspects?

SCENARIO SIMULATION ASSUMPTIONS POPULATION DEVELOPMENT

FACT SHEET NYARUGENGE

134.2 km²

- > 69% of total land area undevelopable
- 31% (41.5 km²) under steep slopes (>30%)

Sources: COK Masterplan (c) Openstreetmap Contributers; agriculture: remote sensing by University Tübingen (TU Berlin, Lindschulte, Olbertz)

RP ASSUMPTIONS POPULATION NYARUGENGE2012Census284,5612016Status quo204,193

2010	Status quo		504,195
	Reference (Master	rplan)	
2040	Scenario		421,987
2040	Rapid Planning Sco	enario	421,987

RP ASSUMPTIONS POPULATION REST OF KIGALI

2012	Census	848,125
2016	Status Quo	1.080.966
2040	Reference Scenario	2.478.013
2040	Rapid Planning Scenario	2.478.013

RP ASSUMPTIONS POPULATION KIGALI TOTAL

2012	Census	1.132.686
2016	Status quo	1.385.159
2040	Reference Scenario	2.900.000
2040	Rapid Planning Scenario	2.900.000

Sources: NISR Census 2012, Kigali Masterplan Presentation Update Feb. 2019, High Growth Scenario

SCENARIO SIMULATION ASSUMPTIONS SPATIAL UNITS

RAPID PLANNING www.rapid-planning.net

	NYARU	GENGE	REST OF KIGALI		
Building type	Status Quo 2018	Assumptions 2040	Status Quo 2018	Assumptions 2040	
Rudimentary	25,6532	64,133	819,397	259,197	
Bungalow	30,231	30,986	154,854	138,768	
Villa	704	23,659	43,911	123,900	
Apartment	16,725	69,766	62,803	473,705	
Row house	0	233,442	0	148,3406	
Total population	304,193	421,986	1.08	2.47 mil	

Sources: COK Masterplan (c) Openstreetmap Contributers; Updated Kigali Masterplan Feb. 2019 (TU Berlin, Lindschulte, Olbertz)

Sources: Rapid Planning, Kigali Masterplan Presentation Update Feb. 2019

SCENARIO SIMULATION SECTOR DATA AND ASSUMPTIONS

*The reference scenario is based on the Nyarugenge and Kigali Masterplan 2013. Due to parallel timing, the Kigali Masterplan Update 2019 has been integrated in parts only. Stakeholder feedback during the first scenario workshop held in Kigali in October 2018 has also been considered. Assumptions on generation and consumption parameters by urban infrastructure sector

STATUS QUO

RAPID PLANNING

www.rapid-planning.net

- REFERENCE SCENARIO 2040
- TRANS-SECTORAL SCENARIOS 2040
- waste generation and disposal and treatment technologies
- water consmption per capita/day
- wastewater generation and treatment technologies
- energy consumption per capita/day and energy mix
- urban agriculture production area by primary and secondary agriculture and consumption

SCENARIO SIMULATION SPATIAL APPROACH – SYSTEM BOUNDARIES

Sources: COK Masterplan (c) Openstreetmap Contributers; Updated Kigali Masterplan Feb. 2019 (TU Berlin, Lindschulte, Olbertz) RAPID PLANNING www.rapid-planning.net

SCENARIO SIMULATION TRANS-SECTORAL PROCESS CHAIN 1

Sources: COK Masterplan (c) Openstreetmap Contributers; agriculture: remote sensing by University Tübingen (TU Berlin, Lindschulte, Olbertz)

WATER - WASTEWATER - ENERGY – URBAN AGRICULTURE

Possible application area: Urban extension areas

- strategy for low-cost-housing and other building types, pre-dominately in peri-urban areas that are not connected to any WWTP
- decentral solid waste management, e.g. composting facilities in the vicinity of agricultural areas

SCENARIO SIMULATION PROCESS CHAIN 1

WATER - WASTEWATER - ENERGY – URBAN AGRICULTURE

SIMULATION MODULES

SCENARIO SIMULATION TRANS-SECTORAL PROCESS CHAIN 1

WATER - WASTEWATER - ENERGY – URBAN AGRICULTURE

DESCRIPTION

- Greywater and blackwater is separated by private households in new buildings/urban extension areas
 - ✓ Greywater is treated in constructed wetlands.
 - ✓ Effluent is re-used as irrigation water, e.g. for wetland farming during Season C
 - Produced biomass from constructed wetland processes into biocharcoal
 - Blackwater is treated in decentralised WWTP (compact wastewater treatment plants, UASB, septic tank, etc.)
- Organic waste is separated and composted at home or in one of the 3 industrial composting plants
- Generated compost is used in fruit&vegetable wetland farming to substitute artificial fertilizer
- Rooftop rainwater harvesting, which is used for cleaning and irrigation of secondary agriculture

ASSUMPTIONS

RAPID PLANNING

ww.rapid-planning.net

- 133.818 inh. / 42.421 HH in Nyarugenge and 522.062 inh. / 177.508 HH in Rest Kigali separate wastewater into grey and blackwater
- 22 ha are used as constructed wetlands in Nyarugenge (84 ha in Rest of Kigali) (2 m²/capita)
- 70% of organic waste is separated at source and collected, of this is processed:
 - 86% in three industrial composting plants
 - 8% home composting
 - 6% in co-fermentation process
- At household level in Nyarugenge, rainwater is harvested from 72,8751m² roof top area and 5.2 mil.
 m² in the rest of Kigali; assumed rainwater availability is 0.0016m³/m²/d: of rainwater harvested
 - 60% is used for cleaning
 - 40% is used for irrigating secondary urban agriculture

SCENARIO SIMULATION TRANS-SECTORAL PROCESS CHAIN 1

RAPID PLANNING

WATER - WASTE WATER - SOLID WASTE - ENERGY - URBAN AGRICULTURE

SYSTEM BOUNDRIES

SCENARIO SIMULATION TRANS-SECTORAL SCENARIO – PROCESS CHAIN 1

WATER - WASTEWATER - ENERGY – URBAN AGRICULTURE

RESULTS

- Generated treated greywater covers 47% of irrigation demand of fruits and vegetables in wetland farming of Nyarugenge during season C.
- Treatment of blackwater in decentralised WWTP improves sanitation conditions and reduces sludge transportation costs
- Compost application (considering max. compost application rates of 13.3 t/ha/a of fresh mass) in wetland farming substitutes:
 - ✓ 151 kg/d of artificial Urea = $16\%^*$ nitrogen demand
 - \checkmark 211 kg/d of artificial Phosphate = 100%* phosphate demand
 - ✓ 404 kg/d of artificial Potash = 100%* potassium demand.
- Primary agriculture fruit &vegetable production = ~42.200 t/a
- Harvested biomass of constructed wetlands can be processed into 52 t/a of charcoal (Biochar), avoiding the use of 374 t/a of wood (deforestation)
- Landfill lifespan can be extended by composting 54.000 t/a of organic waste and 17.000 t/a of sorted recyclables within Nyarugenge
- Three composting plants in Nyarugenge generate around 20,000 t/a of compost for fertilization; covering ~60% of organic fertilizer demand of fruit&vegetable wetland farming in Nyarugenge

SCENARIO SIMULATION MASTERPLAN WASTEWATER TREATMENT

PLANNED WASTEWATER TREATMENT PLANT SERVING CBD/NEIGHBOURING SECTORS

- volumes based on RP Simulator reference scenario results

- above process chain is not directly comparable to trans-sectoral process chain 2

SCENARIO SIMULATION TRANS-SECTORAL PROCESS CHAIN 2

WASTEWATER - SOLID WASTE - ENERGY - URBAN AGRICULTURE

Sources: COK Masterplan (c) Openstreetmap Contributers; agriculture?fentote sensing by University TübingenUpdated Kigali Masterplan Feb. 2019 (TU Berlin, Lindschulte, Olbertz)

- planned Wastewater Treatment Plant
 (WWTP) Gitikinyoyi for serving the CBD and neighbouring sectors (66ha zoned in Kigali Master Plan 2019)
- includes site of Sewage Sludge Treatment Facility (SSTF)

SCENARIO SIMULATION TRANS-SECTORAL PROCESS CHAIN 2

WASTE WATER - SOLID WASTE - ENERGY - URBAN AGRICULTURE

SCENARIO SIMULATION TRANS-SECTORAL SCENARIO STORY LINE - PROCESS CHAIN 1

WASTEWATER - SOLID WASTE - ENERGY - URBAN AGRICULTURE

DESCRIPTION

- WWTP serving CBD and neighbouring sectors (activated sludge), with inflow rate of 90,000 m³/d, requiring space of around 40 ha. Including cofermentation and CHP plant require approx. 44 ha
- Co-Fermentation of the WWTP sludge together with non-household organic leftovers from food processing industries and restaurants (anaerobic digestion generates biogas).
- CHP produces energy from biogas
 - ✓ electric energy for WWTP energy demand
 - ✓ heat for sludge drying
- Digested sludge used as fertilizer for afforestation and non-edible crops
- Wood from agroforestry used for charcoal production (Biochar)

ASSUMPTIONS

- 262.577 inh. / 85.893 HH and the commercial and administration sector of Nyarugenge are connected to the sewage system, bringing wastewater to Gitikinyoyi WWTP (44% of inflow).
- Before Co-Fermentation, sludge generated by Activated Sludge Process is passed through a band filter to be thickened
 - then mixed with max. 20% of organic waste as a share of organic dry matter, e.g. food left-overs from gastronomic services and market waste
- Digested sludge from the co-fermentation process can be used on 1.268 ha (Nyarugenge) and 4.058 ha (rest of Kigali) of afforestation area for humus formation and fertilization (depending on max. application rates)

SCENARIO SIMULATION TRANS-SECTORAL PROCESS CHAIN 2

RAPID PLANNING

A search a fille

WASTE WATER - SOLID WASTE - ENERGY - URBAN AGRICULTURE

SCENARIO SIMULATION

TRANS-SECTORAL SCENARIO – PROCESS CHAIN 1

WATER - WASTEWATER - ENERGY – URBAN AGRICULTURE

RESULTS

 A wastewater treatment plant with a capacity of 90.000 m3/d serves 262.577 inhabitants (Nyarugenge), the commercial and administration sectors of Nyarugenge, as well as part of the sectors Kicukiro and Gasabo. The electric energy produced in the CHP covers 23% of the energy demand of the WWTP

RAPID PLANNING

ww.rapid-planning.net

- The heat produced in the CHP can be used to dry the sludge in order to reduce transportation costs or can be available for industrial processes in the proximity.
- The use of dried sludge as fertilizer for afforestation extends the landfill lifespan
- Conversion of woody biomass from agroforestry into biochar production avoids the use of 1,380 t/a of wood, e.g. from deforestation in Nyarugenge
- 923 t/a of sludge can be applied to afforestation areas in Nyarugenge (~1,200 ha) and rest of Kigali (~4,000 ha)

University TübingenUpdated Kigali Masterplan Feb. 2019 (TU Berlin, Lindschulte, Olbertz)

SCENARIO SIMULATION **SELECTED RESULTS - WATER SECTOR**

RAPID PLANNING www.rapid-planning.net

- Fair supply of drinking water • according to SDG's (rural: 80 l/cap/d, urban 120 l/cap/d)
- Rainwater harvesting (households) •

Water production in Kigali (m³/d)

Bugarama WTP 🔲 Nzove WTP 📕 Karenge WTP 📕 Kimisigara WTP

Water Consumption Kigali (m³/d)

SCENARIO SIMULATION SELECTED RESULTS - WASTEWASTER SECTOR

Total Wastewater Generation in Kigali, m³/d

0

Sortingfacility MY

corfernentation Githinyovi

compost solitiv NY

StatusQuo

Incineration Plant Hatadoust

Reference

Recyclable

Reference

Organic

StatusQuo

Mixedwaste

Transsectoral

Hazardous

Transsectoral

MBPT

Landfill

SCENARIO SIMULATION SELECTED RESULTS - ENERGY SECTOR

waste

Resources recovery

Electricity consumption in Kigali (MWh/a)

HH: Households, NHH: Non-households, HZ: Hazardous waste

*includes pulses
GREENHOUSE GAS EMISSIONS triggering CLIMATE CHANGE

Climate change [...] it is disrupting national economies and affecting lives, costing people, communities and countries [...]. Weather patterns are changing, sea levels are rising, weather events are becoming more extreme [...]. [...] for each 1 degree of temperature increase, grain yields decline by about 5 per cent. [...]

RAPID PLANNING

13.2 Integrate climate change measures into national policies, strategies and planning
13.B Promote mechanisms for raising capacity for effective climate change-related planning and management [...]

GREENHOUSE GAS EMISSIONS triggering CLIMATE CHANGE

Intended Nationally Determined Contribution (INDC) -Rwanda pledged to reduce emissions relative to business-as-usual scenario emission levels by 2030

2014

Rwanda 7.59 Mt CO₂₋eq Total GHG emissions (0.37% of world total) World: 48,892 MtCO2eq Rwanda 0.67 tCO2eq per capita
World: 6.73 tCO2eq per capita
25 % from Solid waste and Wastewater sector
40 % from Agricultural sector

RAPID PLANNING

Public domain

ıfeu

Life Cyc	le Impact Ass	Life Cycle Impact Assessment (LCIA)							
Impact catogony	Lloit	Geo	graphic Sca	ale	Greenhouse Gas CO ₂ -equivalents				
Impact category	Unit	Global	Regional	Fact	tors*				
				-	CO ₂ fossil	1			
Climate change	kg CO ₂ - eq				CH ₄ fossil	30			
					CH ₄ regenerative	28			
					N ₂ O	265			
					CF ₄	6,630			
		X			C ₂ F ₆	11,100			
					CBrF ₃	6,290			
					CHCIF ₂	1,810			
				- - 	CCl ₄	1,760			
				- - - -	C ₂ H ₃ Cl ₃	160			

PROCESS EMISSIONS EXAMPLE

NUTRIENT POLLUTION triggering EUTROPHICATION

Globally, more than 80 per cent of wastewater resulting from human activities is **discharged into rivers or sea without any** pollution removal. Coastal waters are deteriorating due to pollution and eutrophication. Without concerted efforts, coastal eutrophication is expected to increase in 20 percent [...] by 2050.

6.3 By 2030, [...], halving the proportion of untreated wastewater [...] **14.1** By 2025, prevent and significantly reduce [...] nutrient pollution. **15.1** By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems [...], in particular [...] wetlands, [...]

© United Nations SDGs

NUTRIENT POLLUTION triggering EUTROPHICATION

Rwanda has committed itself to attain **100% service** coverage in water supply and sanitation by 2020.

National Sanitation Policy Implementation Strategy MININFRA 2016 according overarching development goals **Vision 2020, EDPRS 2, and SDGs**

© United Nations SDGs

*EU emission inventory report 1990–2008

2008* **Germany:** 795,403 t PO4-eq

8.8 kg PO₄-eq/ capita

NUTRIENT POLLUTION triggering EUTROPHICATION

Life Cycle	Impact Ass	sessment	(LCIA)		Life Cycle Invento	ory (LCI)				
Life Cycle Impact category Eutrophication	Unit	Geo	graphic Sca	ale	Nutrient Emissions PO ₄ -equivale					
	Unit	Global Regional Local			Factors*					
					NO _x	0.13				
					NH ₃	0.35				
					N ₂ O	0.27				
				PO ₄ ³ -	1					
<u>Futue a biestie a</u>	kg PO4-				COD	0.022				
Eutrophication	eq		X	X	NH4 ⁺	0.33				
Eutrophication					NO ₃ ² -	0.1				
					N-compounds unspec.	0.42				
					P ₂ O ₅ -P	1.34				
					P-compounds unspec.	3.06				

*Heijungs et al. 1992

PROCESS EMISSIONS EXAMPLE

RAPID PLANNING

the second states in

• 1feu

RAPID PLANNING www.rapid-planning.net

ıfei

RAPID PLANNING

Long Halls

• 1feu

Session 4

SHOWCASE TRANS-SECTORAL PILOTS

ifeu

ENTRY PROJECT AGATARE UPGRADING AREA

The RP Entry Project serves as a visible showcase for utilizable synergies identified by the trans-sectoral planning methodology developed within RP to upgrade informal settlements or develop new settlements. It connects spatially and substantially to the *Informal Settlement Upgrading Program* of CoK and World Bank located in Agatare/ Nyarugenge. It consists of 5 components, which spatially links the resource flows and actors through local, decentral organization:

ENTRY PROJECT AGATARE UPGRADING AREA GREYWATER RECYCLING

Local Context

- Greywater, low contaminated, faecal free wastewater from body hygiene, laundry and cleaning (EN 12056-1),
- is neither treated nor recycled before discharge into the environment in the EP area.

ENTRY PROJECT AGATARE UPGRADING AREA GREYWATER RECYCLING

Local Context

The lack of greywater management and storm water retention in the catchment area causes pollution, hygienic risk and flooding of the wetlands including the fields of the agricultural cooperative.

A citywide sewer connection to a central sewage treatment plant is not economic due to **low wastewater volume, willingness to pay and hilly topographic** (OPM 2017).

Goal

The *Decentral Greywater Treatment* study gathered yet unknown planning relevant data on domestic greywater (amount, properties, pathways and sinks) tested scientifically the potential of a decentralized technique to treat and recycle household greywater as an interim or hybrid technology.

In line with the *SDG 11: Sustainable Cities and Communities and SDG 6: Clean Water and Sanitation,* the recycling of greywater is a core component in sustainable water management to upgrade slums and improve the access to basic services for all (UN 2016).

ENTRY PROJECT AGATARE UPGRADING AREA GREYWATER RECYCLING

1st Decentral Greywater Treatment Pilot System with kitchen garden installed in 09/16 and used ever since, expanded kitchen garden in 12/17

ENTRY PROJECT AGATARE UPGRADING AREA GREYWATER RECYCLING RESULTS

Chemical and microbiological analyses of 2 greywater treatment pilot systems done over 6 month showed a successful reduction of all pollution indicators, **Fecal Coliforms** (FC) -99.88%, Total Suspended Solids (TSS) -98%, Nitrogen (N) -85%, Phosphorous (P) -67% and Chemical Oxygen Demand (COD) -96%. Thereby the output water quality complies with Rwandan and international discharge tolerance limits (RSB 2009; BGBI 2016) and the WHO (2000) limit of FC for reuse for irrigation.

Parameter	Limits fo	or discharge of		Gakwaya Household Analysis (range: original - corrected by error factor)					Mutangana Household												
	REMA (WHO) 2015*	RSB 2009**	Date		In	naiyolo (la	ige. orginal	Out		%	cha	nge		In		ingle: original	Out		% c	har	ige
TSS	≤50	<50	07.10.16	393			3			99			507			4			99		
mg/l			11.11.16	118			4			97			748			7			99		
			13.12.16	2750			55			98			2875			108			96		
			25.01.17	279			2			99			383			4			99		
			03.03.17	307			2			99			319			22			93		
			21.04.17	370			5			99			675			2			100		
			ø	703	-		12	-		99	-		918	-		25	-		98	-	
Total	≤30	<30	07.10.16	18.3	-	42.7	2.3	-	5.4	87	-	87	23.1	-	54.0	2.7	-	6.4	88	-	88
Nitrogen			11.11.16	13.8	-	32.2	2.9	-	6.7	79	-	79	21.8	-	50.9	1.5	-	3.4	93	-	93
mg/l			13.12.16	9.8	-	22.9	1.2	-	2.8	88	-	88	10.5	-	24.5	2.3	-	5.4	78	-	78
			25.01.17	18.7	-	43.7	4.0	-	9.2	79	-	79	19.3	-	45.1	3.0	-	6.9	85	-	85
			03.03.17	11.5	-	26.8	2.04	-	4.8	82	-	82	12.3	-	28.7	1.93	-	4.5	84	-	84
			21.04.17	14.2	-	33.2	1.12	-	2.6	92	-	92	15.45	-	36.1	0.74	-	1.7	95	-	95
			ø	14.4	-	33.6	2.3	-	5.3	85	-	85	17.1	-	39.9	2.0	-	4.7	87	- [87
Total	≤5	<5	07.10.16	1.9	-	1.4	0.9	-	0.7	53	-	53	2.1	-	1.5	0.9	-	0.7	57	-	57
phosphorus			11.11.16	2.5	-	1.8	1.1	-	0.8	54	-	54	3.0	-	2.2	1.1	-	0.8	63	-	63
mg/l			13.12.16	1.7	-	1.2	0.5	-	0.4	68	-	68	6.5	-	4.8	2.6	-	1.9	61	-	61
			25.01.17	3.6	-	2.7	0.5	-	0.4	87	-	87	9.9	-	7.4	1.0	-	0.7	90	-	90
			03.03.17	3.8	-	2.8	0.5	-	0.4	86	-	86	4.6	-	3.4	4.0	-	2.9	14	-	14
			21.04.17	5.3	-	3.9	0.6	-	0.5	88	-	88	5.6	-	4.2	1.0	-	0.7	83	-	83
			ø	3.1	-	2.3	0.7	-	0.5	73	-	73	5.3	-	3.9	1.7	-	1.3	61	- [61
COD	≤400	<250	07.10.16	1560	-	3469	48	-	33	97	-	99	1845	-	4102	131	-	291	93	-	93
mg/l			11.11.16	673	-	1496	60	-	41	91	-	97	1530	-	3402	87	-	59	94	-	98
			13.12.16	456	-	1014	17	-	11	96	-	99	621	-	1381	46	-	31	93	-	98
			25.01.17	727	-	1616	30	-	20	96	-	99	1088	-	2418	87	-	59	92	-	98
			03.03.17	1156		2570	19		13	98		100	2445		5436	97	-	65	96	-	99
			21.04.17	1945	-	4325	39	-	27	98	-	99	1820	-	4047	68	-	46	96	-	99
			ø	1086	-	2415	36	-	24	96	-	99	1558	-	3464	86	-	92	94	-	97
Fecal	≤400	<400	07.10.16	2100	-		4	-		99.810	-		76000	-		91	-		99.880	-	
Coliforms			11.11.16	1800	-		6	-		99.667	-		52000	-		68	-		99.869	-	
Cfu/100ml			13.12.16	4000000	-		600	-		99.985	-		8000000	- 1		200	-		99.998	-	
1			25.01.17	2000000	-		600	-		99.970	-		500000	-		600	-		99.880	-	
1			03.03.17	300000	-		70	-		99.977	-		2000000	-		300			99.985	-	
1			21.04.17	2000000	-		50	-		99.998	-		4000000	-		400			99.990	-	
			ø	1383983	-		222	-		99.901	-		2438000	-		277	-		99.934	-	
Color code		below limit		below limit - b	out ov	ver halfe of the	ne limit			over limit		compare	d to RSB 2009								

*REMA (WHO) - 2015 - Integrated study of wastewater treatment systems in Rwanda **RSB RS 110:2009 Water Quality – Tolerance limits of discharged domestic wastewat

ENTRY PROJECT AGATARE UPGRADING AREA GREYWATER RECYCLING RESULTS

The data from the pilot systems plus the discharge flow measurements and samplings enabled the mass flow analysis and environmental impact assessment for Agatare: annually approx. 20,000 m^3 greywater (40% of total generated greywater) containing ca. 35 t COD, 280*10^12 Cfu FC, 14 t TSS, 0.5 t N and 0.1 t P are discharged via drainages into the agriculturally used wetlands.

© Rapid Planning Project - ifeu Heidelberg

ENTRY PROJECT AGATARE UPGRADING AREA EROSION CONTROL

Local Context

Inadequate storm water management and bare soils at Biryogo Primary School (BPS) cause **erosion and flooding**, leaving little organic carbon in the lateritic soils and triggering **dust** generation.

The **Sponge School** component is to demonstrate its potential to tackle erosion and increase resilience to extreme weather with the affordable vegetative bio-engineering techniques and upcycling.

... to demonstrate the *Sponge City* approach as alternative to the predominant management of erosion and storm water by impermeable sealing and rapid drain via cement-based structures (World Future Council 2016).

Worldwide **25 to 40 billion t topsoil** get lost due to erosion annually (FAO 2015).

ENTRY PROJECT AGATARE UPGRADING AREA EROSION CONTROL RESULTS

The concept combines **Vetiver grass system** for erosion control slows, spreads, infiltrates and stores rainwater.

Vetiver grass system trapped and saved up already up to 25 cm of soil from erosion (03/16-12/17)

ENTRY PROJECT AGATARE UPGRADING AREA EROSION CONTROL RESULTS

Vetiver – From Erosion Control to Product

In cooperation with **CoK Agaseke Promotion Project**, the RP concept **Vetiver – From Erosion Control to Product** valorizes Vetiver leafs by creating a local handicraft value chain and thereby adds economic interest to environmental conservation.

ENTRY PROJECT AGATARE UPGRADING AREA COMPOSTING & IRRIGATION

Local Context

The lack of greywater management and storm water retention as well as waste dumping in the catchment area cause pollution and flooding of the wetlands including the fields of the agricultural cooperative in Rwampara wetlands. In addition, the lack of fertilizer, little biomass production and inefficient irrigation limits productivity.

ENTRY PROJECT AGATARE UPGRADING AREA COMPOSTING & IRRIGATION

Goal

Improve irrigation and create a nutrient loop through composting for minimal need of external inputs to produce fresh food for Kigali.

ENTRY PROJECT AGATARE UPGRADING AREA COMPOSTING & IRRIGATION

Nutrient Cycle: Livestock – Compost – Farming Efficient Irrigation Diversity and high value crops

ENTRY PROJECT AGATARE UPGRADING AREA COMPOSTING & IRRIGATION RESULTS

GOOD QUALITY COMPOST AS ORGANIC FERTILIZER SUBSTITUTED THE NEED TO BUY COMPOST FROM EXTERNAL SOURCES

RAPID PLANNING

distantial line on store of

QUALITY CRITERIA	PARAMETER	ANALYSIS RESULTS	TOLERANCE LIMITS* and REFERENCE VALUES*°	UNIT	ANALYS IS COSTS (€)
	Salmonella spp.*	negative in 50g	negative in 50g fresh		26
	Facel California (E Cali)	sample	compost		20
	Castro ontorio worm orga	< IU pogativo	-	MPN /g	32
HYGIENE	Maw worm eggs	negative			-
III OILINE	(Ascaris lumbricoides)	negative	-		0
	Tape worm eggs (Eucestoda)	negative	-		9
	Capillaria Worm eggs (Haemonchus contortus)	negative	-		
	As	15.4	40	mg/kg DM	29
	Pb	37	150	mg/kg DM	13
QUALITY CRITERIA HYGIENE POLLUTANT CONTENT* QUALITY IMPURITIES* thereof	Cd	0.12	1.5 or 50mg/kg P2O2	mg/kg DM	13
	Cr, Cr ^(VI)	72	-, 2	mg/kg DM	13
OONTENT	Ni	13	80	mg/kg DM	13
	Нд	0.07	1**°°	mg/kg DM	23
	TI	0.2	1	mg/kg DM	29
	Total N	kg/t DM	_		
	N as (NH4-N + NO3-N)	1.18		kg/t DM	-
	P2O5	7	4.5	kg/t DM	-
	K2O	13.9	1.1	kg/t DM	-
	MgO	4.6	0.498% in DM equal 4.89 kg/t DM	kg/t DM	
	Na	2.6	0.2% in DM equal 2 kg/t DM	kg/t DM	
COMPOST	S	1.3	0.3% in DM equal 3 kg/t DM	kg/t DM	135
QUALITY	Alkaline Substances as CaO	41.5	27	kg/t DM	-
	Cu	31	100-70+°°	mg/kg DM	-
	Zn	177	400-300+°°	mg/kg DM	-
	Organic Matter	22.9	min. 15% (weight) in DM	% in DM	-
	Dry Mass	72.5	max. 45% (weight) water content	% DM from WM	-
	C/N Ratio	15	less or equal 25 ++	in DM	-
	Volume weight	0.676	0.54***	kg/I DM	8
IMPURITIES*	>2mm	0.07		% in DM	5
	Glass	0		% in DM	5
thereof	Hardplastic	0	max 0.5% (weight)	% in DM	•
	Plastic foil	0.07	max. 0.070 (woight)	% in DM	- 10
	others	0		% in DM	5
		• ·		/0 III DIVI	J
Stones	>10mm	0.34	max 0.5 % (weight)	% in DM	5

• 1feu ENTRY PROJECT AGATARE UPGRADING AREA COMPOSTING & IRRIGATION RESULTS

REDUCED ENVIRONMENTAL EMISSIONS, COSTS, TIME FOR IRRIGATION WITH SOLAR PUMP WATER SAVINGS THOUGH MULCHING + SUBSOIL IRRIGATION

Discussion

INTEGRATE INTO URBAN PLANNING

Uni Frankfurt • all participants

©Rapid Planning Project Visualisation: TU Berlin

DISCUSSION INPUT INTEGRATION INTO URBAN PLANNING

IMPORTANT TOPICS to DISCUSS

1.

How to integrate the results of the ENTRY PROJECT IN THE AGATARE UPGRADING AREA with its practically improved trans-sectoral elements related to greywater recycling, composting and erosion control - combined with opportunities for on- and off-'farm' income generation - into the urban planning framework?

RAPID PLANNING

2.

How to integrate the results and recommendations of the **TRANS-SECTORAL SCENARIO SIMULATION PROCESS** with its variety of trans-sectorally calculated process chains into the urban planning framework? betu

DISCUSSION INPUT INTEGRATION INTO URBAN PLANNING

1. INTEGRATION OF THE RESULTS OF THE AGATARE ENTRY PROJECT IN THE UPGRADING AREA INTO THE URBAN PLANNING FRAMEWORK?

RAPID PLANNING

Framework: Green and Integrated Development Model Villages Approach.

This national roll-out programme developed by Rwandan Housing Authority (RHA) up-scales selected sustainable infrastructure solutions that support practices for integrated food, water and energy self-sufficiency in the pilot "Green Village" approach developed by Rwanda Environment Management Authority (REMA) under UNDP-UNEP Poverty and Environment Initiative (PEI) programme and is getting implemented on district-level.

Discussion: Opportunities and constraints for the integration of the results of the ENTRY PROJECT related to greywater recycling, composting and erosion control.

?

betu

2. INTEGRATION OF THE RESULTS OF THE AND RECOMMENDATIONS OF THE TRANS-SECTORAL SCENARIO SIMULATION PROCESS INTO THE URBAN PLANNING FRAMEWORK?

Framework: Master and Land-use Planning with Zoning Regulations.

Integration Needs: Integration of Trans-sectoral Facilities and Activities

Main focus on following topics and related facilities and activities:

- Solid waste sorting facility
- Composting facilities
- Sewage sludge treatment facility
- Application of compost and treated sludge for agriculture and forestry
- Constructed Wetlands in the wetland's buffer zone

Discussion: Opportunities and constraints for the integration of the results and recommendations of the proposed Trans-sectoral Facilities and Activities.

Methodology

The Rapid Planning Premises

Urbanisation Challenges	Rapid Planning
Centralised Planning	Integrated Infrastructure Development
Time-consuming Data Processsing	Systematic Data Generation
Sectoral Interpretation of Data	Integrated Data Visualisation
Fragmented Understanding of the City	Sectoral Urban Analysis
Lack of Inter-deparetmental Collaboration	Integrated Urban Analysis
Unattainable Development Models	Realistic Development Goals
Silo Planning	Collaborative Trans-sectoral Approach
Technological Stagnation	Synergetic Potentials
Short-term Infrastucture Interventions	Integrated Infrastructure Planning

RP as a Strategic Planning Process

Strategi	c Planning	Rapid Planning
Stakehold	ler Mobilisation	Integrated Infrastructure Development
	Manning	Systematic Data Generation
	wapping	Integrated Data Visualisation
l Inde	an Assassment	Sectoral Urban Analysis
Urt	oan Assessment	Integrated Urban Analysis
Co	ncontualization	Realistic Development Goals
CO	nceptualisation	Collaborative Trans-sectoral Approach
Straton	ies Formulation	Synergetic Potentials
Strateg		Integrated Infrastructure Planning

Strategic Planning Process

Strategic Planning	Objectives of Strategic Planning
Stakeholder Mobilisation	Diversity of stakeholders
Mapping	Data collection, processing and visualisation
Urban Assessment	Spatial analysis of the built environment
Conceptualisation	Definition of a vision, medium and short-term objectives
Strategies Formulation	Prioritisation of projects

Capacity Development Considerations

for a

Strategic Planning Process

DISCUSSION INPUT - BUILDING CAPACITIES FOR TRANS-SECTORAL URBAN PLANNING	RAPID PLANNING www.rapid-planning.net	OF APPLIED SCIENCES
What is Capacity Development	?	
Capacity Building	Capacity Development	
Create abilities and skills Overlooks existing capacities, social structures and institutions	Acknowledge and enhance existing capacities Identify and create needed capacities Strengthen local institutions	

What is Capacity Development?

+

Necessary Knowledge

Skills & Know-How

Instruments & Technologies

+

Capacity Development Concepts

		Strateg	ic Planning as a Capa	acity Develop	ment Process		
Strategic	Strategic		Capacities Assessment		Capacity Develo	opment Strategy	Rapid
Planning Component	Planning Objective	Level of Intervention	Identify Capacities	Objective of the CD Process	Learning Approach	CD Instruments	Planning Activities

	Level of Intervention	Society, institution and individual
Capacities Assessment	Identify Capacities	Existing and desired capacities in each intervention level
	Objectives of CD	Expected results and indicators to measure the CD process
CD	Learning Approach	Capacity development strategies
Strategy	Instruments	Learning methods to achieve the CD objectives

Capacity Development for RP

Phase 1: Stakeholder Mobilisation

		Strateg	gic Planning as a Capa	city Develop	ment Process		
Strategic	Strategic		Capacities Assessment		Capacity Develo	pment Strategy	Rapid
Planning Component	Planning Objective	Level of Intervention	Identify Capacities	Objective of the CD Process	Learning Approach	CD Instruments	Planning Activities
		Individual: municipal officers, communities	Individual capacities for communication and promotion of participatory practices	Foster influential	Communication	Meetings with diverse stakeholders	
r Mobilisation	Promote good governance through	Institutional: Municipal Departments and public stakeholders	Inter-departmental communication and information sharing procedures	of diverse stakeholders in planning procedures	Knowledge Management	Documentati- on of participatory practices by municipal stakeholders	Definition, information and sensitization
Stakeholde	participatory practices	Environment: Decision makers, private companies	Information sharing and communication among vertical management	Institutiona- lisation of a flexible framework	Leadership Development	Definition of a participation strategy and establishment	of all relevant stakeholders
		and community representati- ves	Participation processes for the involvement of stakeholders external to the municipality	for participation	Partnerships and Networks	cation channels among stakeholders	

Capacity Development for RP Phase 2: Mapping

Strategic	Strategic		Capacities Assessment		Capacity Develo	pment Strategy	Rapid
Planning	Planning Objective	Level of Intervention	Identify Capacities	Objective of the CD Process	Learning Approach	CD Instruments	Planning Activities
		Individual: municipal or	Individual skills for data collection		Customised Training	Training and Recruiting	(Building) Categorisation
		technicians and experts in data	Individual capacities for data digitalisation and processing		Knowledge Management	Establishment of a statistical analysis	typologies, spatial units, urban
		and statistical analysis	Individual skills for usage of geographical information software	Institutionali- sation of systematic		Definition of data-sharing procedures	Remote
	Holistic understan-	Institutional:	Institutional capacities and technological infrastructure for statistical analysis, categorisation and	data collection and processing methods for integrated	Organisational Strengthening	among municipal departments Investment in technical	Surveys for socio- economic and sector specific infrastructure
Mapping	ding of the condition, challenges and potentials of	technological setting for information sharing	spatial modelling Inter-departmental framework for information and data	urban development		infrastructure Consultancy	data collection Data aggregation
	urban develop- ment in the city		sharing Medium to advanced understanding of rapid urbanisation		Communication		and generation of specific planning values
		Environment: experts and relevant	processes, patterns, and challenges and existing development plans	Interpretation and visualisation		Multi-sectoral communication	Baseline Scenario
		stakeholders in urban development	Participation strategy for the inclusion of	of comprehensi- ve urban data		Partnerships	Reference Scenario
			external stakeholders Visualisation of urban issues		Partnerships and Networks	with the Civil and Private sector	Trans-sectoral Scenario

RAPID PLANNING A sea of the local division of the

Capacity Development for RP Phase 3: Urban Analysis

Strategic Planning as a Capacity Development Process **Capacities Assessment Capacity Development Strategy** Rapid Strategic Strategic Objective of Planning Planning Planning Level of Learning CD **Identify Capacities** the CD Component Objective Activities Intervention Approach Instruments Process Urban Establish inter-Medium to advanced Institutional: departmental Communication Experts from knowledge of existing collaboration municipal municipal and development plans Generation of departments communication a participatory Support and urban analysis **Urban Assessment** Knowledge Recruiting promote process for participatory the holistic Management urban understanding Consultancy **Environment:** of the urban Exposure and current planning and condition of representati-Medium to advanced condition, informed ves of understanding of rapid development Define a decisioncommunities, needs and urbanisation challenges participation making private sector processes, patterns, Organisational and external and challenges strategy for Appraisal of relevant Strengthening urban stakeholders assessment for distribution of relevant stakeholders

Capacity Development for RP

Phase 4: Conceptualisation

RAPID PLANNING www.rapid-planning.net

		Strate	gic Planning as a Capa	acity Develop	ment Process		
Strategic	Strategic		Capacities Assessment	v.	Capacity Develo	pment Strategy	Rapid
Planning Component	Planning Objective	Level of Intervention	Identify Capacities	Objective of the CD Process	Learning Approach	CD Instruments	Planning Activities
		Institutional: Experts from	Medium to advanced understanding of rapid urbanisation processes, patterns, and challenges		Communication	Informative and interactive discussions and workshops with the stakeholders	Definition of applicable sustainable infrastructure development technologies
ualisation	Promote and institutionalise integrated urban	departments	Expert knowledge about sustainable practices for urban development	Institutionali- sation participatory	Knowledge Management	Establish general development objectives for urban development	Identify trans-sectoral synergies
Concept	processes	Environment: representati- ves of	Local knowledge about urbanisation issues	planning and informed		Establish Inter- departmental collaboration and communi- cation strategy	Definition of the Rapid
		private sector and external relevant stakeholders	Skills for promoting participatory urban planning processes		Organisational Strengthening	Definition of an integrated urban development vision	trans-sectoral development scenario

Capacity Development for RP

Phase 5: Strategies Formulation

		Strateg	gic Planning as a Cap	acity Develop	ment Process		
Strategic	Strategic		Capacities Assessment		Capacity Develo	pment Strategy	Rapid
Planning Component	Planning Objective	Level of Intervention	Identify Capacities	Objective of the CD Process	Learning Approach	CD Instruments	Planning Activities
	Create an institutional culture of integrated	Institutional:	Expert knowledge about Integrated urban development		Communication	Establish an institutional framework for collaborative	Considerations for change management
	informed	municipal	Institutional capacities			planning	Lessons
egies	decision- making for urban development	departments	participatory planning processes	Improve the process of good	Knowledge Management	Multi- stakeholder workshops	integrated and participatory planning
Strate	Promote vertical and	Environment: representati- ves of communities,	Framework for participation and communication between municipal	through participatory planning processes	Partnerships and Networks	Establish policies for the institutionali- sation of	Capacity developments
	horizontal decentralisati- on processes	private sector and external relevant stakeholders	departments, communities, private sector and decision makers		Organisational Strengthening	participatory planning and integrated urban development	materials for different target groups

The Strategic Planning Process

Strategic Planning	Objectives of Strategic Planning
Stakeholder Mobilisation	Diversity of stakeholders
Mapping	Data collection, processing and visualisation
Urban Assessment	Spatial analysis of the built environment
Conceptualisation	Definition of a vision, medium and short-term objectives
Strategies Formulation	Prioritisation of projects
Action Plans	Practical approach to taking strategies into action
Strategic Assessment	Assessment of objectives, strategies, and action plans

Capacity Development Materials

RAPID PLANNING

Reference City Frankfurt am Main

Mor

Last Version, 17.30.2019

Rapid Planning "Entry Projects" in th

current looks at the city of Frankfurt on Main on a reference in the provision of sustainable dynamychics and goad quality of \$0. The first acction of the document identifies the project entries of the state entries of automation principles. The document is principle of the state of the state of the state of the state and state of the state of the order of the order of the offense state of the state of the state of the state of the conduct state and state of the conduct state and state of the s

EFFin

M.Sc. Olga Korovina Arch. Elvia A. Erosa M

RP Deliverables Brochures Articles

الشارك والمتعد	RAPID PLANNING
	FFin
Work Package 7	
g Rapid Planning Methodology into Spatia	Integrating R

Reference City Frankfurt am Main

Prof. Dr. Michael Peterrek

Dr. Susana Restrepo Rico M.Sc. Carlos Guerra Bustani M.Sc. Natalia Calisto Solano

M.Sc. Olga Korovina M.Sc. Mónica Salazar

Final Version, 17.10.301

This theorems is childed using four-web scretures. The fore section discusses the solution disording protochers, mergins and instruments and they for the off profound of models and dispetitions for the Gr Browing Dispetitions. The section discusses for the certain-based mergins and the section dispetition of the section of the section and the plotted states and mergins and then size as informations in the dispetition of the other dispetition of the section of the section of the section dispetition. The ment mergins were also been also been also been physical as a section of the section of the other dispetition of the information. The ment meres values of the other dispetition of the section and the section of the section of the other dispetition of the section physical mergins and the section of the section of the section of the information. The ment meres values of the other dispetition of the section physical mergins and the section of the section of the section of the information. The ment mergins are also been also been also been also been physical mergins and the section of the section of the section of the information of the section of the section of the section of the section physical mergins and these weeks are also been also be

		LILL BO
lines.	RAPID PLANNING	man and a state of the
Package 10:		De America Sciencis
te case cities	Work Package 11: Capacity Building / Training Units	
	Task T - 11.1: Capacity Building for Administ Deliverable D - 11.1: An Dutline for a Capacit Administrations	rations ty Building File: for Urban Planning

The General Component Pro: Dr. Midnael Recreek Dr. Unine-Bicchburdt M. Sr. Stama Hebba Dr. Stucana Recrepp Dich Arch. Natalia Calado Global Diplaeiscon Ansaarch "nam

> With previous to Milsc.1 Ima Deporter I Archi Divat Milsc. Cantor

Fisci Version, 31.08.207

This decision proposes as rubbles for the maps of classify dovelaptimes concerning performance within the meaning allocation and on thight through the class. It includes the concept of classification of the performance and the classification of the classification of the action of the excision the excisions days and percent of the classification of the sequence (in classification of the transmission of the section of the classification of the classification of the transmission of the transmission of the percent of the classification of the classification of the transmission of the transmission of the percent of the transmission of the transmission and there is not an end to be replemented by the parties transmission and have candidate there mays, runneed and therefore, classification of the transmission of the transmission of the runneed method to be replemented by the parties transmission of the transmission of the runneed method to be replemented by the parties transmission of the transmission of the runneed method to be replemented by the parties transmission of the transmission of the runneed method to be replemented by the parties transmission of the transmission of the transmission of the runneed method to be replemented by the parties transmission of the t

	TECHNICAL TRANSACTIONS 9/2018 RECUTICT ORE AND URIAN PLANNING ON UNACCAST 9/2018
rek 1945) tre-south	
rno Rico	

Susana Restrepo Rico Yaman Hebbo Ulrike Reichhardt Carlos Guerra Bastani Tuntaer Unwenty of Applied Science, Fourier architecture Comment Comment

A FLIXIBLE SYSTEM FOR LOCALISED SOSTAINABLE DEVELOPMENT FLASTYCZNY SYSTEM LOKALNEGO ROZWOJE ZBOW WOWAZONEGO

About the provide coupled grant grant fragment that a provide to uther which callings or heard grant and a memory on a most increase. Followy the distribution grant must appear of the format grant and the provide structure of the distribution of the provide structure of the structure of th

Stresscrenie

Michael Per

In genus mere some har hystolikarin sense gans atterner i type sok og densem av det syntaxes atterner in sense som atterner som atterner som atterner som atterner som atterner som atterner for atterner som atterner som atterner som atterner som atterner som atterner for atterner som atterner som atterner som atterner som atterner som atterner for atterner som atterner som atterner som atterner som atterner som atterner for atterner som atterner som atterner som atterner som atterner for atterner som atterner som atterner som atterner som atterner som atterner hatterner for atterner som atterner som atterner som atterner som atterner mannangen og som atterner som atterner som atterner som atterner mannangen og som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner mannangen og som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner atterner som atterner som atterner som atterner atterner som atterner atterner atterner som atterner som atterner som atterner som atterner atterner som atterner som atterner atterner atterner som atterner atterner som atterner atterner atterner atterner som atterner atterner som atterner attern

Susana Restrepo Biće Yaman Hebbo Ulirike Reichhardt

 $(0, -1) = -(0, -1)(\lambda_0)^{1/2}$

COLLABORATIVE PLANNING TOR SUSTAINABLE URBAN INTRASTRUCTURE IN FRANKTURT AM MAIN

Ределяеция учалов рыссу гислемовного вар Маказталского материтет Билесталист вар Маказ

Since of the source constraints of the source of the sour

However, the backness or shared in projects whereas it shows any large project to so-strapped or a finance of an array of the strapped or project to a so-strapped or a manner billion, to mater a couple adverge scaling a support work of the strapped or strapped or a s

RAPID PLANNING

in the

Contacts

Rapid Planning Team

THE RAPID PLANNING PROJECT TEAM

THE RAPID PLANNING PROJECT TEAM

_

RAPID PLANNING www.rapid-planning.net

16

Brandenburgische Technische Universität (BTU) Cottbus Brandenburg University of Technology Cottbus	Harry Storch - <u>storch@b-tu.de</u> Downes Nigel <u>-downes@b-tu.de</u> <u>www.b-tu.de</u> Catalina Vieira Mejia - <u>catalina.vieira@ifak.eu</u> Gloria Robleto - <u>gloria.robleto@ifak.eu</u> Manfred Schuetze - <u>manfred.schuetze@ifak.eu</u> <u>www.ifak.eu</u>	
Institut für Automation und Kommunikation e. V. (ifak), Magdeburg		
	Werner Krause - <u>krause@iuwa.de</u> Michael Seyboth - <u>seyboth@iuwa.de</u> <u>www.iuwa.de</u>	
Ostfalia University of Applied Sciences, Campus Suderburg Ostfalia Hochschule für angewandte Wissenschaften	Artur Mennerich - <u>a.mennerich@ostfalia.de</u> <u>www.ostfalia.de</u>	
University of Stuttgart Institute of Energy Economics and the Rational Use of Energy (IER)	Ludger Eltrop - <u>Ludger.Eltrop@ier.uni-stuttgart.de</u> Jannik Vetter-Gindele - <u>Jannik.Vetter-Gindele@ier.uni-stuttgart.de</u> <u>www.uni-stuttgart.de</u>	
The United Nations Human Settlements Programme – UN HABITAT	Sebastian Lange - <u>sebastian.lange@unhabitat.org</u> www.unhabitat.org	