Potenzialstudie für ein integriertes Klimaschutzkonzept

für das Biosphärengebiet Schwäbische Alb

Endbericht

Im Auftrag des BUND-Landesverband Baden-Württemberg

Gefördert von

Heidelberger Stiftung

Baden-Württemberg

Ministerium für Umwelt, Klima und Energiewirtschaft

Heidelberg, Mai 2012
Potenzialstudie für ein integriertes Klimaschutzkonzept
für das Biosphärengebiet Schwäbische Alb

Endbericht
Im Auftrag des BUND-Landesverband Baden-Württemberg

Benjamin Gugel (Projektleitung)
Miriam Dingeldey
Frank Dünnebeil
Hans Hertle
Sabrina Hespeler
Frank Kutzner

ifeu - Institut für Energie- und Umweltforschung Heidelberg GmbH
Wilckensstr. 3, 69120 Heidelberg
Tel.: +49/(0)6221/4767-0, Fax: +49/(0)6221/4767-19
E-mail: ifeu@ifeu.de, Website: www.ifeu.de

Heidelberg, Mai 2012
Inhalt

1 Vorbemerkung .. 3

2 Methodik .. 4
 2.1 Vorgehen .. 4
 2.2 Abgrenzung des Untersuchungsgebiets .. 7

3 Energie- und CO₂-Bilanz ... 9
 3.1 Energiebilanz .. 9
 3.2 CO₂-Bilanz ... 10

4 Energieeffizienzpotenziale ... 12
 4.1 Energieeffizienzpotenziale im Bestand .. 12
 4.2 Potenziale im Sektor Verkehr .. 14
 4.3 Energieverbrauchsprognose 2025 .. 16
 4.3.1 Vorbemerkung und Annahmen .. 16
 4.3.2 Prognose des Energieverbrauchs bis 2025 ... 18
 4.4 Abschätzung des Energieverbrauchs bis 2040 ... 19
 4.4.1 Vorbemerkung .. 19
 4.4.2 Annahmen für die Energieverbrauchsabschätzung 2040 ... 21
 4.4.3 Abschätzung des Energieverbrauchs bis 2040 .. 23

5 Potenziale Erneuerbare Energien ... 25
 5.1 Status quo ... 25
 5.2 Grundlagen und Methodik der Potenzialermittlung .. 26
 5.3 Potenziale Erneuerbare Energien .. 28
 5.3.1 Solarenergie .. 28
 5.3.2 Windkraft .. 31
 5.3.3 Wasserkraft ... 35
 5.3.4 Biomasse ... 37
 5.3.5 Geothermie .. 40

6 Zusammenfassung der Ergebnisse .. 45
 6.1 Effekte der verschiedenen Szenarien ... 45
 6.1.1 Endenergie .. 45
 6.1.2 Primärenergie ... 46
 6.1.3 Klimaschutz (CO₂-Emissionen) .. 48
 6.2 Weitere Entwicklungspfade .. 48
 6.2.1 Ausblick 2050 .. 48
 6.2.2 Relevanz nicht berücksichtigter Aspekte ... 49

7 Auswirkungen auf die regionale Wertschöpfung ... 52
 7.1 Systematik bei der Ermittlung der regionalen Wertschöpfung 53
 7.2 Energieeffizienz: Stärkung der regionalen Energieverbraucher 54
 7.3 Energieeffizienz: Vorteile für regionale Anbieter ... 56
 7.4 Regionale Wertschöpfung durch Erneuerbare Energien .. 57
 7.5 Fazit: Klimaschutz ist regionale Wirtschaftsförderung .. 58
8 Ausblick: Klimaschutz im Biosphärengebiet Schwäbische Alb60
8.1 Klimaschutz als Teil einer nachhaltigen Entwicklung ..60
8.2 Neue Ansätze für die Modellregion ..61
8.3 Das Biosphärengebiet als Klimaschutz-Suffizienzregion ...63

9 Literaturverzeichnis ..65

10 Anhang ...68
10.1 Kurzübersicht Methodik Energie- und CO₂-Bilanz ...68
10.2 Zusatzbetrachtung für den Verkehrsbereich ...73
10.3 Annahmen Flächen ..75
10.4 Detailergebnisse Bilanz ...77
10.5 Sanierungszyklen im KLIMA-Szenario ...78
10.6 100prosim ..78
10.7 Annahmen für den Ausbau Erneuerbare Energien ...81
10.7.1 Solarenergie ...81
10.7.2 Windkraft ..81
10.7.3 Wasserkraft ..84
10.7.4 Biomasse ...85
10.7.5 Geothermie ..86
10.8 Tabellen: Detailergebnisse EE ..89
1 Vorbemerkung

In den letzten Jahren hat sich die Erkenntnis, dass Klimaschutz eine der wichtigsten Herausforderungen der Gegenwart ist und auch in Zukunft sein wird, parteiübergreifend durchgesetzt. Sowohl auf EU- als auch auf nationaler Ebene wurden Weichen für eine verstärkte Nutzung Erneuerbarer Energien und zur Erhöhung der Energieeffizienz gestellt. Zudem ist die Dringlichkeit von Klimaschutzmaßnahmen auch wesentlich stärker in die Öffentlichkeit gerückt. Seit einiger Zeit sind vermehrt auch Bestrebungen zur Entwicklung von energieautarken Kommunen und Regionen zu beobachten, die es zum Ziel haben sich zu 100 % aus Erneuerbaren Energien selbst zu versorgen.

Abbildung 1-1: Biosphärengebiet Schwäbische Alb (http://www.biosphaerengebiet-alb.de/04-Biosphaerengebiet.php)
Das Biosphärengebiet1 Schwäbische Alb wurde im Januar 2008 vom Land Baden-Württemberg eingerichtet und ist seit Mai 2009 als Biosphärenreservat der UNESCO anerkannt. Das 85.000 ha große Gebiet mit etwa 147.000 Einwohnern erstreckt sich über 29 Gemeinden, die in drei verschiedenen Landkreisen, drei verschiedenen Regionen und zwei Regierungsbezirken liegen. Das Gebiet ist geprägt durch den ehemaligen Truppenübungsplatz Münsingen sowie durch eine Vielfalt an Kultur- und Naturlandschaften. Im Rahmen der Biosphärengebietsverwaltung stehen die Themen Bildung für Nachhaltigkeit, nachhaltiger Tourismus sowie Biodiversität und Naturschutz im Zentrum.

2 Methodik

2.1 Vorgehen

Die vorliegende Studie gliedert sich in drei Einzelteile: eine Energie- und CO\textsubscript{2}-Bilanz (Status quo), eine Abschätzung der Energieeinsparpotenziale sowie eine Ermittlung der Potenziale für Erneuerbare Energien. Diese drei Teile werden zunächst separat dargestellt und anschließend in Kapitel 6 zusammengeführt (vgl. Abbildung 2-1). Darüber hinaus werden in Kapitel 7 für einzelne Szenarien die Auswirkungen auf die regionale Wertschöpfung berechnet. Das methodische Vorgehen wird für die einzelnen Teile im Folgenden kurz erläutert.

\begin{center}
\begin{tikzpicture}
 \node[anchor=north west,rectangle,fill=gray!50] (a) at (0,0) {
 \begin{tabular}{c}
 Energie- und CO\textsubscript{2}-Bilanz (Kap. 3) \\
 \end{tabular}
 };
 \node[anchor=north west,rectangle,fill=gray!50] (b) at (4,0) {
 \begin{tabular}{c}
 Energieeinsparpotenziale 2030 (Kap. 4) \\
 - Bestand \\
 - Zubau \\
 - Szenarien: TREND und KLIMA \\
 \end{tabular}
 };
 \node[anchor=north west,rectangle,fill=gray!50] (c) at (4,-2) {
 \begin{tabular}{c}
 Potenziale Erneuerbare Energien (Kap. 5) \\
 - Verschiedene Energieträger \\
 - Zusammenfassung \\
 - Szenarien Basis, EE-Plus, BUND \\
 \end{tabular}
 };
 \node[anchor=north west,rectangle,fill=gray!50] (d) at (0,-4) {
 \begin{tabular}{c}
 Zusammenführung der Ergebnisse (Kap. 6) \\
 - Bewertung \\
 - Abschätzung/Aussicht 2040 \\
 \end{tabular}
 };
 \node[anchor=north west,rectangle,fill=gray!50] (e) at (4,-6) {
 \begin{tabular}{c}
 Ermittlung der regionalen Wertschöpfung (Kap. 7) \\
 \end{tabular}
 };
 \draw[->] (a) -- (b);
 \draw[->] (b) -- (c);
 \draw[->] (c) -- (d);
 \draw[->] (d) -- (e);
\end{tikzpicture}
\end{center}

Abbildung 2-1: Methodisches Vorgehen

1 In Baden-Württemberg wird nach Landesnaturschutzgesetz von einem Biosphärengebiet statt einem „Reservat“ gesprochen, da letzterer Begriff zu sehr mit Isolation und Ausgrenzung assoziiert wird.
Energie- und CO₂-Bilanz

Energieeinsparpotenziale

Als wesentliche Datengrundlage wurden im Raumwärmebereich die Minderungspotenziale auf Basis der abgeschätzten Gebäudestruktur in der Region berechnet. Daten zur Wirtschaftlichkeit wurden dazu bundesweiten Studien entnommen. Als Basis für die Darstellung

2 Deutsches Institut für Urbanistik (Hrsg.) 2011: Klimaschutz in Kommunen
3 Im Strombereich je nach Sektor z.B. zwischen 15 und 25 Cent/kWh, im Wärmebereich etwa 6 bis 10 Cent/kWh.
4 z.B. der Studie des IFEU Heidelberg für das Bundesamt für Bauwesen und Raumordnung zur Fortschreibung der Energieeinsparverordnung (unveröffentlicht).
wirtschaftlicher Stromminderungspotenziale dienten verschiedene Studien, in denen die Einsparpotenziale für verschiedene Technologien und Sektoren berechnet wurden\(^5\).

Potenziale Erneuerbare Energien

Die drei Varianten sollen aufzeigen, ob der prognostizierte Energieverbrauch im Biosphärengebiet bis 2040 vollständig aus Erneuerbaren Energien gedeckt werden kann. Eine Auftei-

Regionale Wertschöpfung

Die regionale Wertschöpfung von Klimaschutzmaßnahmen ist anhand verschiedener Studien ermittelt worden\(^6\). Diese Werte werden auf die Ergebnisse der KLIMA-Szenarien des Biosphärengbiets für die Bereiche Effizienz und Erneuerbare Energien übertragen.

2.2 Abgrenzung des Untersuchungsgebiets

Eine Berechnung von Energieverbräuchen und Potenzialen einzelner Regionen baut im Wesentlichen auf statistischen Daten auf (z.B. Flächen, Einwohnerzahlen, Energieverbrauchsdaten). Diese grundlegenden Daten sind üblicherweise für die verschiedenen Verwaltungseinheiten wie Gemeinden oder Landkreise von verschiedenen Quellen (z.B. StaLa, LUBW, EnBW) verfügbar. Da das Biosphärengebiet jedoch keine Verwaltungseinheit bildet und die Grenze des Gebiets größtenteils nicht entlang der bestehenden Grenzen der Gebietskörperschaften verläuft (einige Kommunen sind nur anteilig am Biosphärengbieta beteiligt), sind hierfür keine spezifischen Daten verfügbar. Abbildung 2-2 gibt einen Überblick über die Flächenanteile der einzelnen Gemeinden des Biosphärengbiets. Dennoch wurde versucht die Grenzziehung des Biosphärengbiets so präzise wie möglich zu berücksichtigen.

In der vorliegenden Studie wurde deshalb auf die vom Planungsbüro Hage & Hoppenstedt, im Rahmen des UNESCO-Antrags über GIS ermittelten Flächendaten und -anteile zurückgegriffen. Dort wurden unter anderem folgende Flächen des Biosphärengbiets ermittelt:

- Siedlungsflächen
- Gewerbeflächen
- Bebaute Flächen (Summe aus Siedlungs- und Gewerbeflächen)
- Landwirtschaftliche Flächen (z.B. Ackerland, Gartenland, Grünland)
- Waldflächen (Wald und Forst)
- Sonstige Flächen (Restflächen wie Verkehr, Gewässer, Heide etc.)

\(^6\) U.a. deENet 2010; IÖW 2011
Für eine Berechnung einer Energie- und CO\textsubscript{2}-Bilanz sowie einer Abschätzung der Potenziale für Effizienz und Erneuerbare Energien spielt dies eine bedeutende Rolle.

Ein Beispiel: Die Gemeinde Bissingen a.d.Teck ist mit 73,47 % ihrer gesamten Gemeindefläche am Biosphärengebiet beteiligt. In diesem Gebiet liegt der gesamte Wald der Gemeinde (100 %), jedoch nur 63,1 % der landwirtschaftlichen Flächen und 26,8 % der Siedlungsflächen. Lagen nun Daten zu z.B. Einwohnerzahlen und Energieverbräuchen der Gemeinde Bissingen a.d. Teck vor, so wurden diese nur in der Größenordnung des Flächenanteils der Siedlungsflächen (26,8 %) in die Berechnung mit einbezogen. In die Abschätzung der Potenziale der Erneuerbaren Energien ging hingegen die gesamte Waldfläche der Gemeinde ein, da diese komplett im Biosphärengebiet liegt.

Darüber hinaus wurde versucht bei der Bilanzierung möglichst genau zu berücksichtigen, ob größere Industriebetriebe einer am Biosphärengebiet beteiligten Gemeinde innerhalb oder außerhalb der Grenze des Biosphärengebiets liegen. So wurde beispielsweise ein großes Biomasse-Kraftwerk einer Papierfabrik der Stadt Ehingen (Donau) bei der Bilanzierung nicht mit eingerechnet.
3 Energie- und CO₂-Bilanz

3.1 Energiebilanz

Energieautarkie kann als eine ausgeglichene Bilanz zwischen lokalem Energieverbrauch und lokaler Energieerzeugung begriffen werden. Dabei wird berücksichtigt, dass nicht jede Region die Möglichkeiten und Mittel hat, den genauen Energieverbrauch nach Anwendungsart (Strom, Wärme, Kraftstoffe) in dieser Form auch regional zu decken. Jede Region sollte deswegen gemäß ihren Potenzialen zunächst einmal versuchen, den Gesamtenergieverbrauch mit der regionalen Energieerzeugung zu erreichen.

Abbildung 3-1: Endenergieverbrauch nach Sektoren und Energieträgern
Der auf die Verbrauchssektoren aufgeteilte Energieverbrauch macht die Strukturen im Biosphärengebiet deutlich. Demnach hat der Haushaltssektor mit 37% bzw. etwa 1.530 GWh den höchsten Anteil am regionalen Energieverbrauch. Die industriellen Unternehmen mit mehr als 20 Mitarbeitern machen 30% bzw. etwa 1.260 GWh des gesamten regionalen Energieverbrauchs aus. Der Verkehr mit knapp 800 GWh ist für 19% des Energieverbrauchs verantwortlich.7 Den geringsten Anteil hat das Kleingewerbe mit 14% bzw. 580 GWh. Die genauen Zahlen zur regionalen Energiebilanz können im Anhang nachgeschlagen werden.

3.2 CO₂-Bilanz

Im vorliegenden Bericht geht es primär um die Deckung des Energieverbrauchs durch Erneuerbare Energien. Klimaschutz bzw. die damit verbundene Reduktion von Treibhausgasen ist neben der Steigerung der regionalen Wertschöpfung aber ebenfalls Ziel einer solchen Energieautarkie. Deswegen werden im Folgenden auch die CO₂-Emissionen abgebildet, welche sich aufgrund des oben beschriebenen Energieverbrauchs ergeben.

Die CO₂-Emissionen berechnen sich anhand des CO₂-Emissionsfaktors, der mit dem Verbrauch von jeder kWh eines Energieträgers entsteht. Die CO₂-Emissionen der betrachteten Energieträger sind unterschiedlich. So ist der Verbrauch einer kWh Strom (623g CO₂/kWh) mit ca. knapp zweieinhalb- bis höheren Emissionen verbunden als die Emissionen aus einer kWh Erdgas (251g CO₂/kWh). Dies spiegelt sich auch in den energiebedingten CO₂-Emissionen im Biosphärengebiet wider.

Demnach wurden im Jahr 2008 aufgrund des Energieverbrauchs im Biosphärengebiet knapp 1,5 Mio. Tonnen CO₂ (inkl. CO₂-Äquivalente) emittiert. Dies entspricht in etwa 10,1 Tonnen pro Einwohner, was wiederum in etwa den energiebedingten CO₂-Emissionen pro Bundesbürger im Jahr 2008 entspricht (9,9 Tonnen CO₂).

7 Zu Besonderheiten im Verkehrsbereich vgl. auch Anmerkungen im Anhang

Der hohe Stromanteil beim Energieverbrauch im Sektor Industrie bewirkt, dass selbiger Sektor mit 36 % bzw. 530.000 Tonnen den höchsten Anteil an den CO₂-Emissionen in der Region besitzt. Daneben ist der Haushaltssektor mit knapp einem Drittel (33 % oder 484.000 Tonnen CO₂) an den Gesamtemissionen verantwortlich. Die verbleibenden 31 % der Emissionen verteilen sich relativ gleich auf den Verkehr (16 % bzw. 242.000 Tonnen CO₂) bzw. das Kleingewerbe (15 % bzw. 220.000 Tonnen CO₂).

Abbildung 3-2: CO₂-Emissionen nach Sektoren und Energieträgern

4 Energieeffizienzpotenziale

Im Folgenden geht es nicht um Energieverbrauchsminderungen durch Verhaltensänderungen (Suffizienz) oder intelligente optimierte Energienutzung (Konsistenz) sondern lediglich um die Ausnutzung von Energieeinsparpotenzialen (Effizienz) im Bestand, welche die zweite Säule eines aktiven Klimaschutzes darstellen sollte (vgl. Abbildung 4-1). In diesem Bereich sollte die Nutzung der verbleibenden Geräte und genutzten Gebäude so effizient wie möglich gestaltet werden. Der verbleibende Energieverbrauch wird in einem idealen Klimaschutzsystem durch Erneuerbare Energien oder Energie aus effizienter Kraft-Wärme-Kopplung gedeckt.

![Abbildung 4-1: Ideales Klimaschutzvorgehen](image)

4.1 Energieeffizienzpotenziale im Bestand

9 Technisch machbar bedeutet, dass Maßnahmen bereits nach heutigem Stand der Technik umsetzbar sind. Wirtschaftlich sinnvolle Maßnahmen sind bei einer prognostizierten Energiepreissteigerung von 1,5% pro Jahr nach dem Gesamtkostenansatz mit geringeren Kosten verbunden als die Nicht-Umsetzung dieser Maßnahmen.

Abbildung 4-2: Summe der wirtschaftlichen Einsparpotenziale in der Region 2008-2025 nach Sektoren und Anwendungen (Strom und Wärme)

Im Strombereich (I&K, Beleuchtung, Kälte, Kraft, etc.) wären bis zum Jahr 2025 im Bestand 382 GWh an Strom einsparbar. Dies entspräche einer Reduktion von 37 % gegenüber dem Stromverbrauch im Jahre 2008. Auch hier fänden sich die größten Potenziale im Sektor Private Haushalte (177 GWh). Die, absolut gesehen, größten Einsparpotenzialen fänden sich in den Bereichen Kälte und Raumwärme + Warmwasser. In der Industrie mit einem Stromeinsparpotenzial von 129 GWh wären es vor allem Kraftanwendungen, in denen sich gegenüber 2008 am meisten Strom einsparen ließe. Im Kleingewerbe könnten wiederum 76 GWh eingespart werden, wobei hier der Fokus auf Beleuchtungstechnologien und Information- und
Kommunikationstechnik gelegt werden sollte. Im Gegensatz zum Wärmebereich könnten die Potenziale im Strombereich bis zum Jahr 2025 im Bestand fast vollständig ausgeschöpft werden, da nahezu alle strombetriebenen Geräte in diesem Zeitraum durch ein sehr energieeffizientes Gerät nach heutigem Technologiestand ausgetauscht werden könnten.

Es könnte also ein großer Teil des Energieverbrauchs im Jahr 2008 auch unter wirtschaftlichen Gesichtspunkten vermindert werden. Dass dies nicht automatisch passiert, da beispielsweise die reinen Anschaffungskosten dem Gesamtkostenansatz vorgezogen werden, wird in den Szenarien in Kap. 4.3 erläutert.

4.2 Potenziale im Sektor Verkehr

Vermeidung und Verlagerung von MIV

Den größten Anteil an den Treibhausgasemissionen hat der Motorisierte Individualverkehr (MIV). Deshalb haben Maßnahmen zur MIV-Vermeidung bzw. zur Verlagerung auf emissionsärmer und emissionsfreie Verkehrsmittel des Umweltverbunds ein großes Minderungspotenzial. Durch Verlagerung des Pkw-Verkehrs auf öffentliche Verkehrsmittel (Bus, Bahn) können die Treibhausgasemissionen pro Fahrt um etwa 40-70 % reduziert werden [TREMOD]. Beim Rad- und Fußverkehr werden die Emissionen nahezu komplett vermieden.

- Mit einer Reduktion der MIV-Fahrleistungen um 5 % (z.B. Erhöhung der Pkw-Auslastung, Verlagerung kürzerer Wege auf das Fahrrad), würden die Treibhausgasemissionen des Verkehrs im Biosphärengebiet im Jahr 2025 um 3,5 % gegenüber dem Trend reduziert.
Eine Verlagerung von 5 % der MIV-Fahrleistungen auf Bus und Bahn würde einen Anstieg der Verkehrsleistungen im öffentlichen Verkehr um ca. 35 % bedeuten. Die verkehrsbedingten Treibhausgasemissionen würden sich insgesamt um 1,4 % gegenüber dem Trend verringern. Mit einer Verlagerung von 10 % der MIV-Fahrleistungen würden 2,7 % der Emissionen eingespart, allerdings müsste dafür der öffentliche Verkehr sehr stark um 70 % ansteigen.

Steigerung der Energieeffizienz im MIV

Signifikante Verbrauchseinsparungen sind durch kraftstoffsparendes, vorausschauendes Verkehrsverhalten sowie durch eine optimierte Fahrzeugausstattung und -wartung (Leichtlaufreifen, -öl, Reifendruckkontrolle etc.) möglich. Das Umweltbundesamt gibt für eine spritsparende Fahrweise Einsparpotenziale von bis zu 20 % (Pkw im Jahr 2020) an, für Leichtlauföle und -reifen werden Potenziale im Bereich 3-5 % angegeben. Bei einer Optimierung von 5 % aller Pkw-Fahrten im Biosphärengebiet, würden die Emissionen des Verkehrs um 0,7 % verringert.

Mit dem Kauf eines Fahrzeuges werden die Rahmenbedingungen für den Verbrauch gesetzt: Innerhalb eines Segments (z.B. Kompaktklasse) sind Verbrauchsunterschiede von 10-15 % oder auch mehr gut möglich (vgl. z.B. ADAC-Ecotest). Weitere Verbrauchseinsparungen sind prinzipiell durch den Kauf eines kleineren Pkw möglich. Mit einer Optimierung von 5 % aller im Zeitraum von 10 Jahren neu gekauften Pkw und einer spezifischen Verbrauchseinsparung von 15 % gegenüber dem Durchschnitt, würden die CO₂-Emissionen im Verkehr um 0,4 % reduziert.

Emissionsminderung im Straßengüterverkehr

Wie im Personenverkehr kann auch imStraßengüterverkehr durch Verbesserung der Effizienz der Fahrzeuge eine weitere Reduktion erreicht werden. Aktuell wurde auf EU-Ebene die Einführung von CO₂-Grenzwerten für Leichte Nutzfahrzeuge beschlossen10 und wird auch für Lkw diskutiert. In begrenztem Umfang können auf lokaler und regionaler Ebene zusätzliche Effizienzmaßnahmen über Informationsangebote unterstützt werden, z.B. Bereitstellung von Materialien zum Kauf effizienter Fahrzeuge sowie zur Verbrauchsoptimierung durch Fahrzeugausstattung und -wartung (Verbrauchsanzeigen, Reifendruckkontrolle u.ä.).

Bei einer Optimierung von 5-10 % des Straßengüterverkehrs im Biosphärengebiet durch Einsatz sparsamerer Lkw und Lieferwagen, verbrauchsoptimierte Kfz-Ausrüstung sowie Fahrerschulungen wäre eine Emissionsreduktion der Lkw-Emissionen im Jahr 2025 um 1,5-3 % möglich. Das wäre eine Minderung der Emissionen des gesamten Verkehrs um 0,2-0,3 %.

Vergleich der Potenziale

Einsparpotenziale durch lokale und regionale Effizienzmaßnahmen sind im Verkehr gering, da kaum Einfluss auf technische Entwicklungen möglich ist, sondern hauptsächlich die Förderung einer möglichst effizienten Fahrzeugnutzung im Fokus steht.

Abbildung 4-3: Emissionsminderungspotenziale im Verkehr im Jahr 2025

4.3 Energieverbrauchsprognose 2025

4.3.1 Vorbemerkung und Annahmen

Der wesentliche Unterschied zu den Potenzialen im Bestand ist, dass neben den Ergebnissen aus der Potenzialermittlung (vgl. Kap. 4.1 und 4.2) in diese Szenarienberechnung auch Veränderungen der strukturellen Rahmenbedingungen sowie ein möglicher Zubau und ein absehbarer Zusatzverbrauch durch Neugeräte (z.B. Zweit-/Drittfernseher) einfließen. Folgendermaßen unterscheiden sich dabei die Szenarien:

<table>
<thead>
<tr>
<th>Minderung der Treibhausgasemissionen im Sektor Verkehr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduktion der MIV-Fahrleistungen (Vermeidung, höhere Pkw-Auslastung)</td>
</tr>
<tr>
<td>MIV-Verlagerung auf Radverkehr</td>
</tr>
<tr>
<td>MIV-Verlagerung auf Bus & Bahn</td>
</tr>
<tr>
<td>Effizientere Pkw-Nutzung</td>
</tr>
<tr>
<td>Kauf sparsamerer Pkw</td>
</tr>
<tr>
<td>Verbrauchsoptimierung</td>
</tr>
<tr>
<td>Kauf sparsamerer Kfz</td>
</tr>
</tbody>
</table>

Abbildung 4-3: Emissionsminderungspotenziale im Verkehr im Jahr 2025
- TREND-Szenario: Hier wird eine Verlängerung der bis 2008 eingeschlagenen Entwicklung nach Art und Umfang der Maßnahmen in der Zukunft abgebildet („Business as usual“). Berücksichtigt werden dabei zudem absehbare Entwicklungen im Emisionshandel und eine Umsetzung der EU-Effizienzrichtlinie. Für die Effizienzseite bedeutet dies, dass der Zubau (Bereich Neubau) und Anschaffung an Neugeräten sich an gesetzlichen Bestimmungen orientiert.

Verkehrsbereich: Zusätzlich zum TREND-Szenario wird hier die Umsetzung von Klimaschutzmaßnahmen im Verkehr unterstellt.

Mit den zwei Szenarien stellen die Gutachter dar, welche Entwicklungspfade es geben kann. Im TREND-Szenario werden aktuelle und absehbare Rahmenbedingungen und Entwicklungen berücksichtigt. Dass dies nicht zu einem effizienterem Umgang mit Energie oder einer klimafreundlicheren Energieversorgung führt, zeigen die vielfach ungenutzten Potenziale im Bestand oder der weitere Ausbau von Kohlekraftwerken auf Bundesebene.

 Können die technisch wirtschaftlichen Potenziale in Bestandgebäuden und den genutzten Geräten vollkommen umgesetzt werden und im Neubau sowie beim Neukauf die effizienteste Lösung gewählt werden, könnte das KLIMA-Szenario erreicht werden. Hier gilt es, die Endverbraucher über alle Ebenen (Bund, Land, Region) zu informieren und zu motivieren, ihre ungenutzten Potenziale auszuschöpfen.

Ein wesentlicher Treiber für den Energieverbrauch und die damit verbundenen CO₂-Emissionen ist die Entwicklung der Einwohner- und Beschäftigtenzahlen und die konjunkturelle Entwicklung in der Region. Anhand von Daten des Statistischen Landesamts kann für die beteiligten Landkreise und deren Anteil am Biosphärengebiet davon ausgegangen werden, dass die Bevölkerung um etwa 3 % bzw. 4.400 Einwohner zurückgeht. In der Region des Biosphärengebiets würden im Jahr 2025 dann ca. 141.800 Menschen leben und Energie verbrauchen.

Gleichzeitig wird davon ausgegangen, dass sich der Wohnflächenbedarf pro Einwohner weiter steigert. Lag dieser im Jahr 2008 in der Region noch ca. bei 41 m² pro Einwohner, wird
angenommen, dass sich dieser Wert bis 2025 auf 44 m² Wohnfläche pro Einwohner erhöhen wird. Dass sich mit sinkendem Anteil der Einwohner pro Haushalt (bzw. steigenden Bedarf nach Ein-Personenwohnungen) auch die Wohnungsstruktur dementsprechend ändern muss, wird nicht berücksichtigt. Insgesamt wird ein Zubau von etwa 250.000 m² Wohnfläche angenommen.

4.3.2 Prognose des Energieverbrauchs bis 2025

Der Endenergieverbrauch aller Sektoren betrug im Jahr 2008 etwa 4.064 GWh. Abbildung 4-4 zeigt die möglichen Entwicklungen des Endenergieverbrauchs für die beiden Szenarien auf.

Im TREND-Szenario käme es beim Endenergieverbrauch durch den Einsatz effizienterer Technik im Strom und Verkehrsbereich, fortlaufender Sanierung im Bestand und aufgrund geringerer Einwohnerzahlen weiter um eine Reduktion von knapp 370 GWh bzw. 9 %. Der Stromverbrauch würde sich in diesem Fall um 8 % reduzieren und hätte noch einen Anteil von 26 % am Gesamtenergieverbrauch. Dafür würde der Faktor Effizienz beim Gerätekauf bei den Endkunden auch weiterhin einen ähnlichen Stellenwert haben. Auch die Sanierungsarten im Bestand bleiben in etwa gleich und im Neubau werden lediglich Gesetzesvorgaben umgesetzt. Der Wärmeverbrauch würde sich damit ebenfalls um 9 % senken. Im TREND-Szenario nimmt der Endenergieverbrauch im Verkehr im Zeitraum vom Jahr 2008 bis zum Jahr 2025 infolge der spezifischen Verbrauchsverbesserungen der Fahrzeuge um 11 % ab.

Im KLIMA-Szenario würde sich der Endenergieverbrauch aller Sektoren bis 2025 gegenüber 2008 um 24 % auf etwa 3.175 GWh (vgl. Abbildung 4-4) verringern. Das entspräche einer jährlichen Minderung von etwa 1,4 %. Im Gegensatz zu den in Kap. 4.1 beschriebenen technisch wirtschaftlichen Potenzialen im Bestand werden diese aus verschiedenen Gründen auch nicht erreicht:

1. Berücksichtigung von Rebound-Effekten durch Effizienzsteigerungen (Mehrkonsum durch weniger Verbrauch),
2. Berücksichtigung von wirtschaftlichem Wachstum (trotz verbesserter Energieproduktivität)
4. Keine Umsetzung der vollen Potenziale aufgrund von fehlender Information bzw. Motivation der Akteure (trotzdem z.B. Steigerung der Sanierungsarten von 1,5 % auf ca. 3 % pro Jahr)
Der Stromverbrauch könnte in diesem Fall um 23 % (insgesamt nun ca. 809 GWh) reduziert werden und hätte am Gesamtenergieverbrauch einen Anteil von 25 %. Der Wärmeverbrauch könnte im KLIMA-Szenario um knapp 26 % auf etwa 1.710 GWh gesenkt werden. Voraussetzung dafür ist, dass die Kunden größtenteils Geräte der höchsten Effizienzklassen kaufen, die Gebäude im Rahmen sinnvoller Sanierungszyklen (vgl. Anhang 10.5) mit den effizientesten Maßnahmen sanieren und im Neubau EnEV -30 % bzw. Passivhausstandard als Norm gesetzt wird. Für den Verkehr wird angenommen, dass im Jahr 2025 gegenüber dem Trend 5 % der Pkw-Fahrleistung durch Umsetzung von lokalen Klimaschutzmaßnahmen auf den öffentlichen Verkehr verlagert werden können sowie weitere 5 % der Pkw-Fahrleistung durch Erhöhung der Fahrzeugauslastung oder die Verlagerung innerörtlicher Fahrten auf das Fahrrad ganz vermieden werden können. Ergänzend werden bei 5 % der verbleibenden MIV-Fahrleistung sowie bei 5 % des Straßengüterverkehrs zusätzliche Effizienzsteigerungen erreicht. Dadurch sinkt der Endenergieverbrauch im KLIMA-Szenario um 16 % gegenüber dem Jahr 2008.

Abbildung 4-4: Endenergieszenarien für die Region für das Jahr 2025 nach Energieformen

4.4 Abschätzung des Energieverbrauchs bis 2040

4.4.1 Vorbemerkung

Während in der Energieverbrauchsprognose für das Jahr 2025 noch die Potenziale berechnet werden können, sind Abschätzungen zum Energieverbrauch über dieses Jahr hinaus schwieriger bzw. unterliegen einer noch größeren Unsicherheit. Viele den Energieverbrauch beeinflussende Komponenten sind noch nicht absehbar, z.B.:

- Gesetzliche Verschärfungen auf EU-, Bundes- und Länderebene: Sollten beispielsweise die in weiten Bereichen selbstgesteckten Ziele für das Jahr 2020 nicht erreicht
werden, können striktere Regelungen in Kraft treten oder wie es zuletzt der Ausstieg Kanadas aus dem Kyoto-Abkommen zeigte, können auch verfehlte Ziele einen Rückzug bedeuten.

Beide Studien untersuchen neben dem zukünftigen Energieverbrauch auch die Energieversorgung für Deutschland bzw. wie der verbleibende Energieverbrauch möglichst klimafreundlich gedeckt werden kann um die Langfristziele der CO₂-Einsparungen von 80-95 % bis 2050 zu erreichen. In Tabelle 4-1 werden die Energieverbräuche für einzelne Sektoren im Jahr 2050 in den beiden Szenarien innerhalb Deutschlands gegenüber dem Ausgangsjahr 2008 dargestellt.

11 Voller Titel 2010: Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global
Tabelle 4-1: Energieverbrauchsreduktionen gegenüber 2008 im Jahr 2050 in Deutschland für verschiedene Szenarien

<table>
<thead>
<tr>
<th></th>
<th>Leitstudie 2010 (BasisSzenario Basis)</th>
<th>Plan B 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>-22 %</td>
<td>-32 %</td>
</tr>
<tr>
<td>Private Haushalte</td>
<td>-47 %</td>
<td>-58 %</td>
</tr>
<tr>
<td>Gewerbe, Handel, Dienstleistung (GHD)</td>
<td>-44 %</td>
<td>-49 %</td>
</tr>
<tr>
<td>Verkehr</td>
<td>-40 %</td>
<td>-69 %</td>
</tr>
<tr>
<td>Gesamt</td>
<td>-40 %</td>
<td>-52 %</td>
</tr>
</tbody>
</table>

In den Studien wird davon ausgegangen, dass in Deutschland im Jahr 2050 zwischen 40 % und 52 % weniger Energie verbraucht werden kann. In der Leitstudie können dabei bis zu 86 % des Energiebedarfs im Jahr 2050 aus Erneuerbaren Energien gedeckt werden. In der Plan B-Studie von Greenpeace ist dies sogar weitestgehend in allen Bereichen (Strom, Wärme, Kraftstoff) möglich. Die Annahmen, welche aus diesen Szenarien für das Biosphärengebiet als Grundlage übernommen wurden, werden im Folgenden für die einzelnen Sektoren erläutert.

4.4.2 Annahmen für die Energieverbrauchsabschätzung 2040

Strukturell wird angenommen, dass sich der Trend bei der Einwohnerzahl im Biosphärengebiet Schwäbische Alb bis 2040 weiter fortfährt und etwa 5.000 Menschen weniger in der Region leben als 2025. Die zunehmenden Wachstumsraten im Gewerbesektor werden ab 2025 nicht mehr so deutlich angenommen. Der Industriesektor wird mit seinen Beschäftigungszahlen und seiner Produktivität als konstant angenommen.

Zwei Entwicklungspfade werden für das Jahr 2040 angenommen, die auf den TREND-Szenario 2025 bzw. KLIMA-Szenario 2025 aufbauen:

1. TREND-Szenario 2040: Weiterführung der bis 2025 eingeschlagenen Trends (Annahmen s.u.)
2. ZIEL-Szenario 2040: Szenario, das bundesdeutsche Langfrist-Zielszenarien berücksichtigt (Annahmen s.u.)

Der Stromverbrauch der privaten Haushalte trägt überproportional zur Senkung des Strombedarfs in der Region bei. Ähnlich dem Plan B-Szenario wird angenommen, dass nur noch die beiden höchsten Effizienzklassen am Markt angeboten werden und somit Altgeräte ausschließlich durch den aktuellen Stand der Technik ersetzt werden. Ein Großteil dieser Ent-
wicklung ist bis 2025 im KLIMA-Szenario bereits abgeschlossen, so dass die Entwicklung im ZIEL-Szenario bis 2040 etwas langsamer voranschreitet. Im TRENDSzenario wiederum werden die 2025 KLIMA-Szenario-Werte erst im Jahr 2040 erreicht.

Im Kleingewerbesektor wird erwartet, dass es nach 2025 zu geringeren Wachstumsraten kommt, so dass Effizienzmaßnahmen im Strombereich ab diesem Zeitpunkt im ZIEL-Szenario nicht mehr nahezu komplett vom Wachstum und neuen Anwendungen (z.B. Klimatisierung) neutralisiert werden. So sieht auch das Plan B Szenario mittelfristig erhöhte Einsparpotenziale im Stromverbrauch dieses Sektors. Im TRENDSzenario werden die Effizienzmaßnahmen langsamer umgesetzt und erreichen erst im Jahr 2040 die Werte des KLIMA-Szenarios 2025.

Im Wärmebereich kann im Kleingewerbesektor der Energieverbrauch mit geringerem Wachstum deutlich gesenkt werden. Laut Plan B lassen sich zukünftige Einsparungen bei der Prozesswärme damit zum einen durch klassische gebäudebezogene Maßnahmen (z.B. Wärmedämmung), zum anderen aber auch durch eher typisch „industrielle“ Maßnahmen (Effizienzsteigerung beim Warmwassereinsatz, Prozesswärmerückgewinnung) erzielen. Für das ZIEL-Szenario bedeutet dies, dass ab 2025 nahezu 2,5 % Endenergie jährlich gegenüber 2008 im Wärmebereich eingespart werden könnten. Im TRENDSzenario werden immer noch 0,6 % Minderung pro Jahr angenommen.

Im Industriebereich hängt viel von der Energieintensität des Sektors ab. Eine Senkung des absoluten Verbrauchs um 1 % bei gleichem Output bedeutet eine Steigerung der Stromproduktivität um 3-4 %. Strebt man eine Senkung um 20 % bis 2040 an, so muss dementsprechend die Stromproduktivität, verbunden mit wirtschaftlichem Wachstum, um mehr als 50 % verbessert werden. Während bis 2025 noch relativ leicht Potenziale dafür erschlossen werden, wird sowohl im ZIEL als auch im TRENDSzenario die jährliche Effizienzverbesserung zurückgehen.

Beim Wärmebedarf des industriellen Sektors sind ähnliche Effizienzpanschiale zu erwarten wie bis 2025. Allerdings sind diese nur bei deutlich höheren Energiepreisen wirtschaftlich zu erreichen. Es wird deswegen auch hier von einer langsameren Entwicklung ab 2025 sowohl im TRENDSzenario als auch im ZIEL-Szenario ausgegangen.

sind weitere Effizienzsteigerungen auch bei konventionell angetriebenen Fahrzeugen nötig. Aktuell wird zur Erreichung der energiepolitischen Ziele vom Bundesverkehrsministerium gemeinsam mit relevanten Akteuren eine Mobilitäts- und Kraftstoffstrategie für Deutschland erarbeitet.

Für das Biosphärengebiet sind aufgrund der begrenzten Verfügbarkeit aktueller regionaler Daten und fehlenden regionsspezifischen Prognosen keine individuellen Annahmen zur Verkehrsentwicklung nach 2025 möglich. Daher wird die Abschätzung möglicher Entwicklungen bis zum Jahr 2040 an die Bandbreite der bundesweiten Szenarien angelehnt.

Das ZIEL-Szenario bis 2040 liegt innerhalb der Prognosen im Plan B-Szenario für 2050 von Greenpeace bzw. schneidet sogar leicht besser ab. Dies liegt daran, dass für viele Bereiche bei den betrachteten kürzeren Sanierungszyklen bereits ein Großteil der Maßnahmen bis 2040 erreicht ist. Im TREND-Szenario werden dagegen weder die Werte für das Basisszenario der Leitstudie noch das Plan B-Szenario bis 2050 erreicht. Es ist davon auszugehen, dass sich der letztendlich tatsächliche Verbrauch im Jahr 2040 innerhalb des Korridors dieser beiden Szenarien befindet.

4.4.3 Abschätzung des Energieverbrauchs bis 2040

Die Berechnung mit den vorangegangenen Annahmen zeigt im Ergebnis für das TREND-Szenario, dass im Jahr 2040 bis zu 18 % bzw. 750 GWh gegenüber dem Ausgangsjahr eingespart werden könnten. Der Endenergieverbrauch würde in diesem Fall im Jahr 2040 noch knapp 3.450 GWh betragen.

Der Stromverbrauch könnte im TREND-Szenario in diesem Fall um 16 % bzw. 170 GWh (insgesamt nun ca. 940 GWh\(^{12}\)) reduziert werden und hätte am Gesamtenergieverbrauch einen Anteil von 27 %. Die meisten Einsparungen würden im Sektor Private Haushalte erfolgen, in dem gegenüber 2008 rund 120 GWh (-40 %) eingespart werden könnten. Im Sektor Industrie und Kleingewerbe wären die Einsparungen absolut (55 GWh bzw. 35 GWh) als auch relativ geringer (-10 % bzw. -18 %).

Der Wärmeverbrauch des TREND-Szenarios würde sich bis 2040 um 18 % bzw. 420 GWh reduzieren. Demnach wäre die Versorgung mit Wärmemittlerträgern noch zu 56 % am Gesamtenergieverbrauch verantwortlich. Die größten Einsparungen würden auch hier im Sektor Private Haushalte erfolgen, in welchem Energieeinsparungen im Wärmebereich von knapp 255 GWh bzw. 21 % gegenüber 2008 erzielt werden könnten. Im Sektor Industrie würde, relativ gesehen, mit 24 % (absolut 170 GWh) an Einsparungen sogar noch höhere Einsparpotenziale erzielt. Lediglich im Sektor Gewerbe würde die Energieverbrauchssteigerungen, welche bis 2025 erzielt worden sind, nicht durch die Einsparungen der Folgejahre kompensiert, so dass hier ein leichter Energieverbrauchanstieg gegenüber 2008 (+2 % bzw. ca. 5 GWh) zu verzeichnen wäre.

Im ZIEL-Szenario könnten im Jahr 2040 bis zu 42 % weniger Endenergie in der Region des Biosphärengebiets Schwäbische Alb verbraucht werden. Mit Minderungen gegenüber 2008 von etwa 1.745 GWh müssten in diesem Fall noch etwa 2.455 GWh mit Erneuerbaren Energien für das Ziel einer Energieautarkie gedeckt werden.

Der Stromverbrauch würde in diesem Szenario bis zum Jahr 2040 um insgesamt 30 % bzw. 325 GWh\(^{13}\) gegenüber 2008 sinken. Ein Großteil dieser Einsparungen wären auch im ZIEL-

\(^{12}\) Inkl. ca. 40 GWh Elektromobilität

\(^{13}\) Inkl. ca. 50 GWh für Elektromobilität
Szenario auf den Sektor Private Haushalte zurückzuführen, in dem ca. 170 GWh (-57 %) gegenüber dem Stromverbrauch im Jahr 2008 eingespart werden könnten. Der Industriesektor könnte mit 135 GWh (-26 %) zu den Einsparungen beitragen, während das Kleingewerbe einen Anteil von 70 GWh (-35 %) hätte.

Der Wärmeverbrauch könnte im ZIEL-Szenario 2040 um knapp 49 % auf etwa 1.185 GWh nahezu halbiert werden. Im Haushaltssektor könnten mit 710 GWh (-58 %) absolut und relativ am meisten Wärmenenergie eingespart werden. In den Wirtschaftsbereichen könnten noch 280 GWh (-39 %) im Industrie- und 155 GWh (-41 %) im Kleingewerbesektor eingespart werden.

Abschätzung des Endenergieverbrauchs im Biosphärengebiet Schwäbische Alb bis 2040

<table>
<thead>
<tr>
<th>Year</th>
<th>Kraftstoffverbrauch</th>
<th>Stromverbrauch</th>
<th>Wärmeverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>5.000 GWh</td>
<td></td>
<td>-18%</td>
</tr>
<tr>
<td>2040</td>
<td>2.345 GWh</td>
<td></td>
<td>-42%</td>
</tr>
</tbody>
</table>

Abbildung 4-5: Entwicklungswege für den Endenergieverbrauch 2040

5 Potenziale Erneuerbare Energien

5.1 Status quo
Stationär (ohne Verkehr)

Der aktuelle Endenergieverbrauch im stationären Bereich beträgt in der Region des Biosphärengebiets knapp 3.370 GWh (vgl. Abbildung 5-1). In der Energie- und CO$_2$-Bilanz konnte bereits aufgezeigt werden, dass knapp 10 % des Wärmeenergieverbrauchs über Biomasse gedeckt werden.

![Diagramm der Erneuerbaren Energien im stationären Bereich im Biosphärengebiet Schwäbische Alb 2008](image)

Abbildung 5-1: Anteil Erneuerbarer Energien im Biosphärengebiet Schwäbische Alb

Der Strombereich wurde in der vorliegenden Studie bisher mit einem Bundesmix für die CO$_2$-Bilanz berechnet, so dass die lokale Erneuerbare Stromerzeugung noch nicht berücksichtigt wurde. Mit den vorliegenden Erneuerbaren-Energien-Gesetz-Einspeisedaten für die regionalen Anlagen kann für das Jahr 2008 festgehalten werden, dass etwa 7,3 % des lokalen Strombedarfs über lokale Erneuerbare Energien Anlagen gedeckt werden.

Auf den stationären Wärme- und Stromverbrauch hochgerechnet haben Erneuerbare Energien im Jahr 2008 mit knapp 299 GWh etwa 9 % des regionalen Energiebedarfs gedeckt.

In Abbildung 5-2 ist die Aufteilung der Erneuerbaren Energien nach Energieträgern dargestellt. Es zeigt sich, dass mit 70 % (205 GWh)14 ein Großteil der Erneuerbaren Anteile im Jahr 2008 durch Biomasse gedeckt wird. Im Wärmebereich finden sich noch Solarthermie-Anlagen, welche einen Anteil von 5 % (16 GWh) an den gesamten Erneuerbaren Energien haben. Für Wärmepumpen und kleinere Erneuerbare Wärmenetze lagen für die Region kei-

14 Angabe ist witterungskorrigiert
ne belastbaren Zahlen vor. Im Strombereich haben Biogasanlagen mit 35% (27 GWh) eine vorherrschende Stellung. Dies entspricht einem Anteil von 9% an der gesamten Erneuerbaren Energieerzeugung. Photovoltaik, Wasserkraft und Windkraft tragen in etwa gleichen Teilen (17 GWh, 15 GWh, 15 GWh) zur Stromproduktion bei, was jeweils ca. 5% der Erneuerbaren Erzeugung ausmacht.

Abbildung 5-2: Aufteilung der Erneuerbaren Energien nach Energieträgern

5.2 Grundlagen und Methodik der Potenzialermittlung

Die verschiedenen Abwägungen werden berücksichtigt, indem drei unterschiedliche Ausbauvarianten für Erneuerbare Energien dargestellt werden. Es wird für jeden Energieträger (Geothermie, Biomasse, Wind-, Wasser- und Solarenergie) eine Variante erstellt. Fasst man die jeweiligen Varianten für die einzelnen der Energieträger zusammen, bilden die Additionen der ersten beiden Szenarien (Basis, EE-Plus) die äußeren Grenzen eines Entwicklungs-
korridors für den Ausbau Erneuerbarer Energien in der Region. Das BUND-Szenario zeigt auf, inwieweit Erneuerbare Energien ausgebaut werden können, wenn verschiedene BUND-Positionen (vgl. Anhang) berücksichtigt werden. Die Szenarien dienen als Grundlage für die regionalen Akteure, um aufzuzeigen, welche Ziele in der Region verfolgt werden sollen bzw. unter welchen Umständen diese erreichbar sind. Die Szenarien unterscheiden sich wie folgt:

- **Basis Szenario:** In diesem Fall werden bis 2040 die Erneuerbaren Energien soweit ausgebaut, wie es unter Berücksichtigung verschiedener Belange, wie Naturschutz, Landscapeoch oder Tourismusaspekten möglich ist. Bei den Ausbauraten für dezentrale Anlagen werden Ausbauraten im Schnitt der letzten Jahre angenommen. Hier fließen also sowohl die Ausbauraten erfolgreicher Jahre als auch weniger erfolgreicher Jahre ein.

Für die verschiedenen Technologien wird nicht auf Einzelanlagen oder konkrete Flächen bzw. Standorte eingegangen, da hier lokalen und regionalen Planungsprozessen nicht vorgegrieffen werde soll. Zudem wird empfohlen, bei größeren Vorhaben gegebenenfalls eine Bürgerbeteiligung für eine Steigerung der Akzeptanz zu bedenken.

Die unterschiedliche Nutzung des Potenzialbegriffs bei Studien zum Ausbau der Erneuerbaren Energien führt häufig zu missverständlichen Interpretationen der Ergebnisse. Ursache dafür ist, dass in verschiedenen Studien mit unterschiedlichen Potenzialbegriffen gearbeitet wird. Die Potenzialpyramide aus Abbildung 5-3 zeigt die unterschiedlichen Potenzialbegriffe auf. Im Folgenden soll dies am Beispiel Solarenergie erläutert werden.

endlich ist dieses „Erschließbare Potenzial“ nur noch ein Bruchteil der Energie, die im theoretischen Potenzial zur Verfügung steht.

In der vorliegenden Studie wird anhand der Szenarien versucht, die verschiedenen Potenziale aufzuzeigen. Während sich das Szenario EE-Plus noch im Bereich des wirtschaftlichen Potenzials bewegt, ist das Szenario BUND aus heutiger wirtschaftlicher Sicht bereits schon ein erschließbares Potenzial. Das Szenario Basis wiederum berücksichtigt andere Belange bei der Erschließung und befindet sich dementsprechend im obersten Teil der Pyramide (oberhalb des Szenario BUND).

Abbildung 5-3: Potenzialpyramide (Quelle: Praxisleitfaden „Klimaschutz in Kommunen“)

5.3 Potenziale Erneuerbare Energien

5.3.1 Solarenergie

Auch politische Unwägbarkeiten, wie das Aussetzen des Marktanreizprogramms im Jahr 2010 oder die Reduzierung der Einspeisevergütungen für Solarstrom, werden nicht verhindern, dass weitere große und bisher ungenutzte Potenziale sowohl für Wärme als auch für Strom erschlossen werden. Dazu werden beispielsweise auch die technische Entwicklung und die positive Entwicklung bei der Kosteneffizienz in der Produktion und der Energieeffizienz von Photovoltaik-Modulen beitragen. So werden z.B. dünnfilmige Module den Einsatzbereich von Photovoltaik (Fassaden, Leichtdächer) weiter ausweiten. Auch der Einsatz von So-
larthermie bietet neue Möglichkeiten. Große Mehrfamilienhäuser könnten zentral versorgt werden und erste Anlagen gehen in Betrieb, in denen solare Wärme auch zur Kühlung im Sommer einsetzbar ist. In der Leitstudie des BMU wird erwartet, dass der Solarstrom im Jahr 2020 einen Anteil von etwa 9% am Stromverbrauch haben wird. Für die Solarthermie, die derzeit vor allem zur Erwärmung von Trinkwasser und der Aufbereitung von heißem Wasser für die Heizungsanlage dient, prognostiziert der Verband bis 2050 einen Anteil von bis zu 30% am Wärmeverbrauch.

Neben Solarthermie und Photovoltaik sind für andere solare Technologien (Solarthermische Kraftwerke) aus heutiger Sicht in Deutschland kaum nennenswerte Anteile zu erwarten. Deshalb werden diese in der vorliegenden Studie nicht betrachtet.

Aufgrund der heute weitaus größeren Verbreitung der ertragreicheren kristallinen PV-Module werden in der vorliegenden Studie nur diese eingehender betrachtet. Beliebige Anteile amorper Module und anderer Zelltechnologien lassen sich bei Bedarf über die Prozentangabe einführen.

Die Abschätzung der Potenziale für Solarenergie erfolgte in der vorliegenden Studie u.a. anhand der Szenariosoftware 100prosim. Zusätzlich wurde ein Abgleich mit aktuellen und zu-

Für den Bereich der Solarthermie wird in allen Szenarien davon ausgegangen, dass aufgrund der besseren Wärmeabnahme Solarthermische Anlagen ausschließlich auf Dachflächen installiert werden. Darüber hinaus wird eine maximale Wärmeabnahme für Wärme aus Solarthermie von 150 GWh angenommen.

Szenario Basis

Dies würde bedeuten, dass im Jahr 2040 3,4 % der Gebäude und Freiflächen mit Sonnenkollektoren und Photovoltaik-Modulen bedeckt wären. Dies entspricht 147 ha. Davon wären 81 % der Fläche (117 ha) mit Photovoltaik-Modulen bedeckt, was einer Erzeugung von 166 GWh entspräche. Die verbleibenden 19 % der Flächen (30 ha) ständen für Solarthermische Kollektoren zur Verfügung, die 106 GWh an Wärmeenergie bereitstellen könnten.

Szenario EE-Plus

Im Szenario EE-Plus wird angenommen, dass sich die hohen Photovoltaik-Zubauraten der Jahre 2008-2010 auch weiterhin erzielt werden können. Zusätzlich zu den Dachflächen werden in diesem Szenario auch 1,6 % der Gebäude- und Freiflächen für Photovoltaik-Freiflächenanlagen genutzt (69 ha). Bei der Solarthermie wird die dreifache Zubaurate der letzten 10 Jahre veranschlagt. Damit würde im Jahre 2040 das gesamte in 100prosim angenommene Potenzial an Dachflächen ausgeschöpft (4 % der Gebäude- und Freiflächen, entspricht 172 ha).

Bei einer Aufteilung von 84 % der nutzbaren Dach- und Freiflächen für Photovoltaik-Module sowie 16 % für Solarthermie-Kollektoren ergäbe sich so ein Potenzial von 150 GWh für Wärme aus Solarthermie und 283 GWh Strom aus Photovoltaikanlagen.
Szenario BUND

Im BUND-Szenario wird deshalb angenommen, dass entsprechend dem Szenario EE-Plus alle für eine solare Nutzung geeigneten Dachflächen erschlossen werden können. Im Bereich der Solarthermie wird unter der Annahme der dreifachen Zubaurate der letzten 10 Jahre das gesamte Potenzial von 150 GWh Wärme ausgeschöpft. Alle übrigen geeigneten Dachflächen werden zur Stromerzeugung mittels Photovoltaik genutzt. Für Freiflächen wird allerdings – anders als in Szenario EE-Plus – angenommen, dass nur etwa 0,5 % der Gebäude- und Freiflächen für Photovoltaik-Freiflächenanlagen genutzt werden. Damit könnten 217 GWh Strom aus Photovoltaik bereitgestellt werden.

Tabelle 5-1: Übersicht über die Entwicklungsmöglichkeiten der Solarenergienutzung (in GWh)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2008</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuell</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Szenario Basis</td>
<td>106</td>
<td>166</td>
</tr>
<tr>
<td>Szenario EE-Plus</td>
<td>150</td>
<td>283</td>
</tr>
<tr>
<td>Szenario BUND</td>
<td>150</td>
<td>217</td>
</tr>
</tbody>
</table>

5.3.2 Windkraft

Die südlichen Bundesländer werden sich auch bei der Windkraft mehr und mehr ihrer Verantwortung in einer nationalen Energieerzeugungsstruktur bewusst und versuchen nun auch, ihre Windenergiepotenziale auszunutzen. Ziel der baden-württembergischen Landesregierung ist es, den Anteil von Windstrom von derzeit 0,9 % an der Bruttostromerzeugung bis 2020 auf 10 % zu erhöhen. Verschiedene Berechnungen (ZSW 2011; BdW 2011) gehen davon aus, dass dafür im Land 1.200-1.500 neue Anlagen installiert werden müssten. Dies entspricht rund 1 % der Landesfläche, die für Windkraft bereit gestellt werden müsste. Im Kli-

Derzeit befinden sich im Biosphäregebiet 16 Windkraftanlagen mit einer Leistung von 13,8 MW. Diese konnten im Jahr 2008 15 GWh Strom erzeugen. Der Windatlas des Landes zeigt auf, dass die schwäbische Alb aufgrund ihrer windreichen Hochlagen im Grunde für die Windkraft prädestiniert ist. Bei der Standortsuche wurden seitens der Regionalplanung des-

In allen drei Szenarien wurden nur Flächen betrachtet, die schon einmal Teil einer regional-planerischen Untersuchung waren (also größtenteils Flächen mit mehr als drei Anlagen). Potenziale, die Kommunen mit der Ausweisung von Anlagen im Rahmen ihrer Flächennutzungspläne ab Mitte/Ende 2012 zustehen, wurden nicht betrachtet.

Szenario Basis

Im Szenario Basis werden von den 33 untersuchten Flächen (vgl. Anhang) 22 Flächen ausgeschlossen, da auf diesen Flächen bereits seitens der Regionalverbände kleine bis mittlere Konflikte aus Naturschutzsicht zu erwarten sind. Zudem wird angenommen, dass die

19 Flächen unter 25 ha wurden deswegen nicht weiter untersucht.

20 Beinhaltet alle Gebiete die auf der Gemarkung von Kommunen innerhalb des Biosphäregebiets liegen.
Höhenbeschränkungen aufgrund militärischer Flugsicherungszenonen die Anlagen an einigen Standorten unwirtschaftlich machen würden. Die verbleibenden elf Flächen würden ein Gebiet von 470 ha (0,5 % der Fläche) umfassen, in dem bis zu 40 Windkraftanlagen errichtet werden könnten. Der Stromertrag für diese Anlagen läge nach einer konservativen Schätzung bei etwa 156 GWh.

Szenario EE-Plus

Das Biosphärengebiet umfasst 2,3 % der Landesfläche. Rechnet man die Ziele aus dem Klimaschutzkonzept 2020+ des Landes von 20,2 TWh Strom aus Windenergie auf die Fläche des Biosphärengebiets um, so ergibt sich ein theoretisch benötigter Windenertrag von 478 GWh pro Jahr. Da der Windatlas des Landes jedoch aufzeigt, dass das Untersuchungsgebiet neben den Kammlagen des Schwarzwaldes die besten Windhöflichkeiten im Land aufweist, ist davon auszugehen, dass zur Erreichung der Landesziele in jedem Fall mindestens der für das Szenario EE-Plus berechnete Wert im Untersuchungsgebiet bereit gestellt werden müsste.

Szenario BUND

Im Szenario BUND werden ebenfalls die oben angesprochenen Naturschutzkonflikte berücksichtigt. Das gemeinsame Positionspapier zu Windkraft von BUND und NABU zum Windenergieausbau geben hier die Möglichkeiten vor. Es wird davon ausgegangen, dass für einige der oben ausgeschlossenen Flächen Kompromisse (Geringere Anlagenzahl, Ausgleichsmaßnahmen bzw. Konzentration auf Flächen mit geringerem Konfliktpotenzial) geschlossen werden. Unter dieser Annahme könnten auch wenige Anlagen in Pflegezonen des Biosphärengebiets entstehen, die mit dem Windenergieerlass des Landes nicht komplett ausgeschlossen werden. Flächen mit großem und mittlerem Konfliktpotenzial werden weiterhin ausgeschlossen. So könnten auf 21 Flächen die vorgesehenen oder in verringriger Zahl dargestellten Windkraftanlagen erschlossen werden. Für die Anlagen wurde ein Flächenbedarf von 867 ha (1,0 %) ermittelt, auf denen etwa 75 Windkraftanlagen stehen könnten. Mit diesen wiederum könnten 300 GWh Strom erzeugt werden.

21 Hier wird in den Studien von 2000 h/a Vollaststunden ausgegangen, was auf exponierten Standorten durchaus erreicht werden kann. Bei höherer Leistung (z.B. 2,5 MW) der Anlagen und entsprechend höherer Nabenhöhe sinken bei gleichem Ertrag die dafür benötigten Vollaststunden (ca. 1600 h/a). Dies wurde in der vorliegenden Studie jedoch nicht näher betrachtet.
Tabelle 5-2: Übersicht über die Entwicklungsmöglichkeiten der Windkraft (in GWh)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2008</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuell</td>
<td>15</td>
<td>156</td>
</tr>
<tr>
<td>Szenario Basis</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>Szenario EE-Plus</td>
<td>640</td>
<td>640</td>
</tr>
<tr>
<td>Szenario BUND</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

5.3.3 Wasserkraft

Durch Wasserkraftanlagen im Biosphärengebiet Schwäbische Alb wurde im Jahr 2008 eine Strommenge von 15,2 GWh erzeugt. Dies entspricht 20 % der Erneuerbaren Stromversorgung in diesem Jahr und deckt 1,4 % des gesamten Stromverbrauchs der Region ab. Die Mittelgebirgsstruktur der Alb mit ihren abfließenden Gewässern ist für die Wasserkraftnutzung innerhalb Deutschlands prädestiniert.

Szenario Basis

Szenario EE-Plus

Das Szenario EE-Plus orientiert sich an den maximal ausschöpfbaren Möglichkeiten in den beschriebenen Studien (Optimierung, Revitalisierung, Neubau von Kleinstwasserkraftanlagen). Vor dem Hintergrund des hohen Linienpotenzials der regionalen Gewässer wird die Annahme getroffen, dass sich mit der Marktreife und Wirtschaftlichkeit verschiedener Technologien\(^\text{23}\) auch im Kleinstwasserkraftbereich unter Berücksichtigung gesetzlicher Regelungen weitere Potenziale erschließen lassen. In diesem Szenario wird deshalb angenommen, dass insgesamt bis zu etwa 2/3 des Linienpotenzial abgedeckt werden, was einer Verdoppelung der Erzeugung des Jahres 2008 (+ 15 GWh) entspräche.

Szenario BUND

\(^{22}\) Eine Bewertung der spezifisch- ökologischen Anforderungen nach dem Wasserkrafterverlass einzelner Standorte ist im Rahmen der vorliegenden Studien nicht erfolgt.

\(^{23}\) z.B. Wasserrad, Lamellenturbine, oder Wasserkraftscheibe
Tabelle 5-3: Übersicht über die Entwicklungsmöglichkeiten der Wasserkraftnutzung (in GWh)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2008</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuell</td>
<td>Strom</td>
<td>Strom</td>
</tr>
<tr>
<td>Szenario Basis</td>
<td>15</td>
<td>47</td>
</tr>
<tr>
<td>Szenario EE-Plus</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Szenario BUND</td>
<td>22</td>
<td>33</td>
</tr>
</tbody>
</table>

5.3.4 Biomasse

Die Verbrennung von Biomasse spielt in Deutschland schon immer eine wichtige Rolle bei der Energieversorgung. Durch Förderprogramme (Marktanreizprogramm), EEG und nicht zuletzt aufgrund des Erneuerbaren-Energien-Wärmegesetzes konnte sich der Marktanteil in den letzten Jahren kontinuierlich erweitern. Im Jahr 2008 lag der Anteil der Biomasse am Endenergieverbrauch bei 6,8 % (2010 bereits bei 7,9 %)24. Im Strombereich konnten im Jahr 2008 Anlagen zur Stromerzeugung aus Biomasse ca. 4,5 % (2010 5,5 %) und im Wärmesektor 7,3 % (2010: 9 %) Marktanteil erzielen. Mit derzeit 7.100 Anlagen konnte in Deutschland ein neues wirtschaftliches Standbein für die Landwirtschaft entstehen. Mit der Möglichkeit der direkten Biogaseinspeisung wird es in Zukunft auch die Möglichkeit gegeben, Biogas aus dezentralen Anlagen zu transportieren und an einem anderen Ort zu nutzen.

Von den 16,9 Mio. ha landwirtschaftlicher Nutzfläche wurden im Jahr 2008 auf ca. 10 % (1,6 Mio. ha) Pflanzen zur energetischen Nutzung angebaut. Diese Fläche kann nach einer Studie des Deutschen Biomasse-Forschungszentrums und der Universität Hannover bis 2020 auf 3,7 Mio. ha verdoppelt werden, ohne dass Nutzungskonkurrenzen gegeben wären oder die Nahrungsmittelsicherheit in Deutschland gefährdet wäre25. Bei einer Reduktion der Anbaufläche von 13,2 Mio. hätten Energiepflanzen auf Agrarflächen einen Anteil von 28 % der Fläche.

In Baden-Württemberg stehen jeweils etwa 39 % der Landesfläche als land- und forstwirtschaftliche Flächen zur Verfügung (insgesamt 2,8 Mio. ha). 5 % der Fläche wird derzeitig für die energetische Nutzung benötigt. Im Biomasseaktionsplan wird davon ausgegangen, dass ein Ausbau der Nutzung auf 10 %-15 % der landwirtschaftlichen Flächen problemlos durchführbar wäre. Insgesamt wird im Biomasseaktionsplan für das Jahr 2050 von einer Nutzung von 150 PJ ausgegangen, von welchen 20 PJ durch Importe gedeckt werden. Ein Großteil des zusätzlichen Bedarfs gegenüber 2008 (+63 %) wird durch die verstärkte Nutzung von

24 Quelle: Bundesverband BioEnergie e.V.
25 Gegenüber 2008 wären dies 1 Mio. ha Zuwachs durch Ertragssteigerungen, 0,8 Mio. ha durch Nutzung von Brach- und sonstigen Flächen sowie 0,4 Mio. ha Nachfragerückgang für Futter und Nahrungsmittel infolge Bevölkerungsrückgang sowie -0,1 Mio. ha durch Flächenbedarf für Siedlungs- und Verkehrsfläche.

Szenario Basis

Auch bei der holzartigen Biomasse gibt es in diesem Szenario keine größeren Veränderungen. Schmidt-Kanefendt geht in seinem 100prosim-Tool davon aus, dass eine nachhaltige Wald- bzw. Holznutzung max. 30 % des jährlichen Zuwachses in die energetische Verwertung laufen sollten26 (derzeit auf den Zuwachs in Deutschland bezogen 63 %). Im Szenario Basis würde durch eine extensierte Holzwirtschaft mit Konzentration auf die stoffliche Nutzung nur noch 25 % des Zuwachses für energetische Zwecke genutzt. Weitere 5 % des Zuwachses würden mit den gleichzeitig zusätzlichen zur Verfügung stehenden Mengen aus der Restholznutzung beispielsweise zentral in einem Biomasseheizkraftwerk verfeuert.

Die Nutzung von Stroh spielt in diesem Szenario keine Rolle, da angenommen wird, dass es vollständig zur Tierhaltung oder für die Humusbildung auf dem Acker benötigt wird.

Insgesamt könnten mit dieser Potenzialnutzung 42 GWh Strom und 196 GWh Wärme (32 GWh durch zentrale Bereitstellung) erzeugt werden. In diesem Szenario wird zudem noch ein Nachhaltigkeitsaspekt berücksichtigt, der neben dem regionalen Angebot auch die regionale Nachfrage berücksichtigt. Ein Bewertungsansatz für Biomasse seitens des Instituts

26 Derzeit werden, bezogen auf den Zuwachs in Deutschland, 63% des Zuwachses der energetischen Verwertung zugesteuert.
für Wohnen und Bauen schlägt vor, dass Biomasse als knappes Gut nicht unnötige in ineffizienten Gebäuden verfeuert wird. Es wird deswegen empfohlen, im Rahmen eines Biomassebudgets maximal 30 kWh Biomasse/m² Wohnfläche als nachhaltige Nutzung festzulegen. Die oben beschriebenen 196 GWh Wärme liegen (unter der Berücksichtigung von Verbräuchen in den anderen Sektoren) in etwa in diesem Bereich.

Szenario EE-Plus

In diesem Szenario würden 30 % der Ackerflächen, und damit 50 % mehr als es im Programm 100prosim empfohlen wird, für die Produktion von Energiepflanzen bereitgestellt. Dabei wird von der Annahme der oben beschriebenen Studien ausgegangen, dass dies ohne Nutzungskonkurrenz (Nahrung, Naturschutz) möglich wäre. Auch die energetische Holznutzung würde, bezogen auf den rechnerischen jährlichen Zuwachs, nur geringfügig aufgrund verstärkter Nachfrage für die stoffliche Nutzung zurückgehen. In diesem Fall würden 50 % des Zuwachses direkt in die energetische Verwertung fließen. Die Nutzung von Stroh wird auf das maximal nutzbare Maß von 33 % angesetzt, das jeweils zur Hälfte zur Strom und Wärmezeugung genutzt werden würde.

Szenario BUND

Insgesamt könnte in diesem Szenario die durch Biomasse gewonnene Wärmemenge gegenüber 2008 leicht auf 257 GWh erhöht werden. Etwa 68 GWh würden davon zentral in Wärmenetzen bereit gestellt werden. Die Stromproduktion in Biogasanlagen würde mit 90 GWh in diesem Szenario gegenüber 2008 etwa der 3,5 fache Menge entsprechen.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2008 Wärme</th>
<th>2008 Strom</th>
<th>2040 Wärme</th>
<th>2040 Strom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuell</td>
<td>207</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szenario Basis</td>
<td>196</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szenario EE-Plus</td>
<td>311</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szenario BUND</td>
<td>253</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5-4: Übersicht über die Entwicklungsmöglichkeiten der Biomasse (in GWh)
5.3.5 Geothermie

Tiefe Geothermie
Tiefengeothermie basiert auf der Tatsache, dass die Temperatur in der Erdkruste mit zunehmender Tiefe steigt. Ursache für die erhöhten Temperaturen ist der Erdwärmestrom, der von der heißen Erdkern und aus radioaktiven Zerfallsprozessen in der Erdkruste gespeist wird und zur kälteren Erdoberfläche hin gerichtet ist. Die sich daraus ergebende Temperaturerhöhung beträgt im Durchschnitt 3 K pro 100 m Eindringtiefe. Regional schwankt dieser Wert jedoch oft stark. Im Bereich geothermischer Anomalien können die Temperaturen schon in geringer Tiefe mehrere hundert Grad betragen. Auch in Deutschland gibt es Gebiete, in denen der Temperaturgradient gegenüber dem Durchschnittswert wesentlich erhöht ist. Eines davon liegt direkt im Biosphärengebiet im Bereich des Kirchheim-Uracher-Vulkangebietes.

Im Vergleich zu anderen Erneuerbaren Energien steht die Nutzung der tiefengeothermischen Energie noch weit am Anfang. In Deutschland gibt es dabei bisher hauptsächlich Projekte, die hydrothermale Quellen zur Energiegewinnung nutzen. Dieses Potenzial ist jedoch an das Vorhandensein unterirdischer Wasserleiter gebunden. Ein erheblich größeres Potenzial liegt in der Nutzung der thermischen Energie des heißen Tiefengesteins über das Hot-Dry-Rock-Verfahren (HDR), da dieses überall in Deutschland vorhanden ist. Insbesondere aufgrund der hohen Bohrkosten können die vorhandenen großen Potenziale noch nicht wirtschaftlich erschlossen werden. Für eine Bohrung bis in 5.000 m Tiefe müssen derzeit mehrere Milliarden Euro veranschlagt werden. Mit der Weiterentwicklung der notwendigen Technologien könnte die Tiefengeothermie in Zukunft jedoch eine lohnende Energiequelle sein. Für eine Wirtschaftlichkeit spielen darüber hinaus die Entwicklungen der Energiepreise sowie vorhandene Verteilernetze und Abnehmer für Fernwärme eine zentrale Rolle.

Hintergrund: Ist Geothermie eine Erneuerbare Energiequelle?

Im Biosphärengebiet Schwäbische Alb befindet sich in der Region um Bad Urach eine geothermische Anomalie (Schwäbischer Vulkan). Der Temperaturgradient ist dort im Vergleich
zum deutschen Durchschnitt stark erhöht. Für die Nutzung der geothermischen Energie hat dies den Vorteil, dass die gewünschte Temperatur bereits in geringer Tiefe erreicht wird und dadurch niedrigere Bohrkosten sowie geringere Investitionskosten anfallen.

\textit{Szenario Basis}

\textit{Szenario EE-Plus}

Im Szenario EE-Plus wird angenommen, dass am Standort Bad Urach eine HDR-Anlage realisiert wird und zusätzlich noch zwei weitere Tiefengeothermie-Kraftwerke an Standorten errichtet werden, bei denen die bereits erprobte hydrothermale Technik zum Einsatz kommt. Voraussetzung hierfür ist, dass entsprechende Projekte in Zukunft wieder gefördert werden. Aufgrund der bestehenden Wärmeanomalie sowie der bereits bestehenden Bohrungen und der Kenntnis der Untergrundverhältnisse ist dann in der Region um Bad Urach zuerst mit der Wirtschaftlichkeit einer HDR-Anlage zu rechnen. Zudem legen Geologische Untersuchungen nahe, dass hydrothermale Vorkommen zumindest im östlichen Teil des Biosphärengebiets mit der notwendigen Temperaturen (150-200 Grad) vorliegen könnten. Beim Energieertrag der Anlagen werden Referenzwerte von bestehender Anlage in Unterhaching zu Grunde gelegt28. Daraus ergäben sich ein Stromertrag aller Anlagen von 34 GWh/a sowie ein Wärmeertrag von 238 GWh/a. Um die Wärmeabnahme zu sichern würden dabei insbesondere Stan-

27 Bereits seit Mitte der 70er Jahre versorgt eine hydrothermale Quelle das dortige Thermalbad. Diese Thermalquelle ist eine der stärksten und mit 61°C Lagerstätten-Temperatur auch eine der wärmsten des Landes Baden-Württemberg. Die Bohrung hat eine Tiefe von etwa 770 m. Weitere Potenziale aus hydrothermalen Quellen sind in der Region jedoch noch nicht erforscht.

28 Es wird angenommen, dass eine geringere geothermale Leistung vorliegt als in Unterhaching. Die aktuellen Werte des Unterhachinger Werkes werden trotzdem erreicht, da mit Optimierung der zukünftigen Anlagen höhere Auslastungsgrade angenommen werden.
dorten mit industriellen Großabnehmern sowie dichtbesiedelte Gebiete bevorzugt. Da eine wirtschaftliche Nutzung der oben beschriebenen Anlagen in der Region noch nicht durch Bohrungen verifiziert werden kann, werden die damit verbundenen Potenziale in Tabelle 5-5 in Klammern gesetzt.

Szenario BUND

Tabelle 5-5: Übersicht über die Entwicklungsmöglichkeiten der Tiefengeothermie (in GWh)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2008</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wärme</td>
<td>Strom</td>
</tr>
<tr>
<td>Aktuell</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Szenario Basis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Szenario EE-Plus</td>
<td>(238)</td>
<td>(34)</td>
</tr>
<tr>
<td>Szenario BUND</td>
<td>(238)</td>
<td>(34)</td>
</tr>
</tbody>
</table>

Oberflächennahe Geothermie

29 Die Förderung von 25 Ct/kWh aus dem neuen EEG 2012 wurde hier allerdings noch nicht berücksichtigt.

30 Das Potenzial von Erdwärmekollektoren und der Nutzung von Wärme aus Umgebungsluft wurde in der vorliegenden Studie aufgrund niedriger Jahresarbeitszahlen und häufiger Unwirtschaftlichkeit (zusätzliches Heizsystem bei kalten Temperaturen benötigt) nicht berücksichtigt.
Für die Potenzialanalyse des Biosphärengebiets Schwäbische Alb wurden verschiedene bestehende Studien und Quellen herangezogen, welche sich ebenfalls mit den Potenzialen der oberflächennahen Geothermie in der Region beschäftigt haben.

Im nordwestlichen Teil des Biosphärengebiets (Albvorland, Metzinger Raum) ist das Potenzial für oberflächennahe Geothermie dagegen sehr hoch. Wasserschutzgebiete sind hier nur vereinzelt ausgewiesen. Aufgrund der relativen Nähe zur Bad Uracher Wärmeanomalie steigt die Temperatur in dieser Region mit zunehmender Tiefe vergleichsweise stark an. Nach vorliegenden Bohrergebnissen kann dort mit 60 bis 80 W Wärmeenergie pro Tiefenmeter kalkuliert werden. Somit können im nordwestlichen Teil des Biosphärengebiets aus einer 100 m tiefen Erdwärmebohrung etwa 6 bis 8 kW Entzugsleistung gewonnen werden.

Szenario Basis

Im Szenario wird angenommen, dass der Ausbau der Erdwärmesonden entsprechend dem derzeitigen bundesdeutschen Durchschnitt verläuft. Im Jahr 2040 würden dann 0,3 % der Gebäude- und Freifläche zur Gewinnung von Wärme aus oberflächennaher Geothermie genutzt.
genutzt. Dies würde einem Zubau von rund 40 Erdwärmesonden pro Jahr entsprechen. Dies entspräche in etwa dem Einbau einer Wärmepumpe in jedem vierten Neubau, was in den letzten Jahren in etwa auch deutschlandweit der Trend war. Hier wurde bereits berücksich-
tigt, dass der Wärmepumpenausbau aufgrund der geologischen und wasserrechtlichen Ge-
gebenheiten vorwiegend im Albvorland stattfinden könnte. Im Jahre 2040 könnten so etwa 18 GWh/a aus Wärmepumpen gewonnen werden. Um angegebene Wärmemenge für das Biosphärengebiet bereitzustellen wären 5 GWh elektrische Antriebsenergie pro Jahr not-
wendig.

Szenario EE-Plus

Im Szenario EE-Plus wird ein sehr ambitionierter Ausbau der Wärmepumpen angenommen, so dass die Hälfte aller Neubauten mit Wärmepumpen ausgestattet wird und auch in sanier-
ten Gebäuden fast ein Viertel nachträglich mit Wärmepumpen ausgestattet wird. Damit wür-
den 1,3 % der zur Verfügung stehenden Gebäude- und Freiflächen für die Gewinnung von oberflächennaher Erdwärme beansprucht. Dies entspräche einem Zubau von rund 180 Erd-
wärmesonden im Jahr. Daraus könnten 76 GWh Wärme pro Jahr bereitgestellt werden. Da-
für wären rund 20 GWh elektrische Antriebsenergie notwendig. Mit 1,3 % wären nur 10 % des maximalen Ausbaugrades der Erdwärmesonden (13 % der Gebäude- und Freiflächen), welcher in der 100prosim-Potenzialsoftware angenommen wird, erreicht.

Szenario BUND

Im Szenario BUND wird ein ambitionierter Ausbau angenommen. Gegenüber der aktuellen bundesdeutschen Ausbaurate könnte diese im Biosphärengebiet verdoppelt werden. Dem-
nach würden jährlich rund 80 neue Wärmepumpen installiert, so dass 2040 ein Gebäude-
und Freiflächenanteil von rund 0,6 % für die Gewinnung von oberflächennaher Geothermie
beansprucht werden würde. Neben jedem 4. Neubauten würden zusätzlich auch in Niedrig-
energietandard sanierte Altbauten mit Wärmepumpen versorgt. Aus oberflächennaher Ge-
othermie könnten somit etwa 35 GWh Wärme bereitgestellt werden (Hierfür wäre eine elektri-
sche Antriebsenergie von 9 GWh notwendig).

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2008</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuell</td>
<td>Wärme</td>
<td>Wärme</td>
</tr>
<tr>
<td>Szenario Basis</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Szenario EE-Plus</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Szenario BUND</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5-6: Übersicht über Entwicklungsmöglichkeiten der oberflächennahen Geothermie (in GWh)

6 Zusammenfassung der Ergebnisse

Im Folgenden sollen die ermittelten Ergebnisse aus den Effizienzszenarien (TREND, KLIMA) den verschiedenen Ergebnissen aus den Erneuerbaren Energien-Szenarien (Basis, EE-Plus, BUND) gegenübergestellt werden. Dies geschieht zunächst auf Basis der Endenergie bevor noch eine primärenergetische Betrachtung erfolgt.

6.1 Effekte der verschieden Szenarien

6.1.1 Endenergie

In der Potenzialstudie sollte geklärt werden, ob und inwieweit der Energieverbrauch innerhalb des Biosphärengebiets durch Erneuerbare Energien gedeckt werden kann. Abbildung 6-1 gibt einen Überblick aus Sicht des Endenergieverbrauchs. Grundlage waren die in Kap. 4.4 und Kap. 5.3 ermittelten Ergebnisse für das Jahr 2040. Es ist ersichtlich, dass keines der Ausbauszenarien für Erneuerbare Energien die beiden Prognosen für den Endenergieverbrauch 2040 vollständig decken könnte.

Abbildung 6-1: Gegenüberstellung der Energieeffizienzscenarien und der Szenarien für Erneuerbare Energien

Selbst in dem Fall, dass maximale Einsparungen (ZIEL-Szenario) und ein höchst ambitionierter Ausbau der Erneuerbaren Energien (Szenario EE-Plus) erreicht werden, können maximal 77% des Endenergieverbrauchs gedeckt werden (vgl. Tabelle 6-1). In der Tabelle sind die verschiedenen endenergetischen Anteile der Erneuerbaren Energien am Endenergieverbrauch dargestellt. Im oberen Teil der Tabelle beziehen sich alle Werte auf das Effizienz-TREND-Szenario, während die Anteile im unteren Teil der Tabelle die endenergetischen Anteile Erneuerbarer Energien im Effizienz-KLIMA-Szenario darstellen.
Der stationäre Endenergieverbrauch (ohne Verkehr) könnte in diesem Fall durch lokale Erneuerbare Energieträger gedeckt werden (100 %). Während es im Strombereich zu einer Übererfüllung bei der Produktion von Erneuerbaren Energien (157 %) kommen würde, könnten im Wärmebereich 68 % aus Erneuerbaren Energien bereitgestellt werden.

Für den Fall, dass der Endenergieverbrauch nur mäßig sinkt (TREND-Szenario) und die Erneuerbaren Energien im Biosphärengebiet nur sensitiv ausgebaut werden (Szenario Basis), könnten im Jahr 2040 29 % des Endenergiebedarfs mit Erneuerbaren Energien gedeckt werden. Ohne Verkehr wäre der Endenergieverbrauch zu 25 % durch Erneuerbare Energien gedeckt. Am Strom- bzw. Wärmeverbrauch hätten die Erneuerbaren Energien einen Anteil von 43 % bzw. 17 %.

Tabelle 6-1: Anteil Erneuerbarer Energien am Endenergieverbrauch für verschiedene Erneuerbaren Energien-Szenarien und die beiden Effizienzpfade

<table>
<thead>
<tr>
<th>Szenario</th>
<th>Effizienz TREND</th>
<th>Effizienz TREND (ohne Verkehr)</th>
<th>Effizienz TREND Strom (ohne Verkehr)</th>
<th>Effizienz ZIEL</th>
<th>Effizienz ZIEL Strom (ohne Verkehr)</th>
<th>Effizienz ZIEL Wärme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>20%</td>
<td>25%</td>
<td>43%</td>
<td>29%</td>
<td>53%</td>
<td>27%</td>
</tr>
<tr>
<td>BUND</td>
<td>39%</td>
<td>48%</td>
<td>75%</td>
<td>55%</td>
<td>92%</td>
<td>60%</td>
</tr>
<tr>
<td>EE-Plus</td>
<td>55%</td>
<td>68%</td>
<td>127%</td>
<td>77%</td>
<td>157%</td>
<td>68%</td>
</tr>
</tbody>
</table>

6.1.2 Primärenergie

Mit der Bereitstellung von Strom ist jedoch auch ein erhöhter Energieaufwand bei der Umwandlung vorhanden. Beispielsweise wird bei der konventionellen Stromerzeugung für eine kWh genutzten Strom die 2,6 fache Energiemenge bei der Stromerzeugung (Primärenergie) benötigt. Ähnliches gilt bei der Solarenergie. Mit einem Quadratmeter Kollektorfläche können etwa 350 kWh Wärme erzeugt werden aber nur ca. 125 kWh Strom. Rechnerisch könnte man also mit der zur Verfügung stehenden Dachfläche mehr Endenergie (Wärme) gewinnen als in den Szenarien oben angegeben. Rechnerisch scheint eine endenergetische Vollversorgung möglich. Allerdings bleibt dies unberücksichtigt, da einerseits die bereitgestellte Wärmemenge aufgrund des geringen Temperaturniveaus nicht genutzt werden könnte, andererseits Strom als höherwertige Energieform ebenfalls benötigt wird.

Vor diesem Hintergrund ist auch eine primärenergietische Betrachtung der Potenzialergebnisse wichtig. Dies bedeutet, dass untersucht wird, wie viel Primärenergie durch die Bereitstellung lokaler Erneuerbarer Energien eingespart werden kann. Denn nur eine primärenergietische Betrachtung kann die tatsächlich erfolgte Umweltbelastung darstellen. Dazu wurden die in der BMU-Broschüre „Erneuerbare Energien in Zahlen“ gesammelte Faktoren über...
nommen, die den primärenergetischen Aufwand für die Bereitstellung von 1 kWh Endenergie für verschiedene Energieträger berücksichtigen.

Abbildung 6-2: Primärenergieverbrauch für verschiedene Szenarien im Jahr 2040

33 Für die Darstellung wurde bei konventionellen Energieträgern vereinfacht die Primärenergiefaktoren 1,17 bei Wärmeenergieträgern, 2,6 bei Strom und 1,1 bei Kraftstoffen angenommen.
6.1.3 Klimaschutz (CO₂-Emissionen)

Die CO₂-Emissionen sind eng mit dem Primärenergieverbrauch verknüpft, da hier ebenfalls die gesamten Umweltwirkungen durch die Nutzung verschiedener Energieträger berücksichtigt werden. Der Verbrauch einer Kilowattstunde Strom ist beispielsweise durch den erhöhten Energieeinsatz zur Erzeugung mit wesentlich höheren Emissionen verknüpft (623g CO₂/kWh) als beispielsweise der Verbrauch des Wärmeenergieträgers Erdgas (251g CO₂/kWh).

Bedingt durch die Systematik von kommunalen und regionalen Energie- und CO₂-Bilanzen sind jedoch eine unmittelbare Wirkung des Ausbaus Erneuerbarer Energien in einer Region und die Auswirkungen auf die CO₂-Emissionen nur begrenzt darstellbar. Dies liegt daran, dass nach aktuellem Bilanzierungsstandard für die Berechnung der CO₂-Emissionen aus dem Stromverbrauch ein bundeseinheitlicher Emissionsfaktor herangezogen wird. Derzeit liegt dieser bei den angesprochenen 623 g CO₂/kWh. Inwieweit sich dieser bis zum Jahr 2040 ändern wird ist derzeit noch unklar, da der Ausstieg aus der Atomkraft, der bundesweite Ausbau Erneuerbare Energien und die Rolle der Kohlekraft bei der zukünftigen bundesweiten Stromerzeugung heute noch nicht absehbar sind.

Zudem könnte durch diese Systematik mit dem zu Grunde liegenden Strom-Bundesmix nicht ausreichend dargestellt werden, dass beispielsweise die Region im Erneuerbaren Energien Ausbauszenario EE-Plus sogar Stromexporteur wäre. Würde man jedoch eine Territorialbilanz REGIO (vgl. dazu auch die Systematik im Anhang)rechnen, in der die regionale Stromerzeugung berücksichtigt werden würde, sind ähnliche CO₂-Minderungsration wie beim Primärenergieverbrauch zu erwarten.

6.2 Weitere Entwicklungspfade

Bis zum Jahr 2040 ist nach den vorliegenden Ergebnissen eine Vollversorgung mit Erneuerbaren Energien sowohl auf Endenergiedeite als auch auf Primärenergiedeite in keinem der Szenarien möglich. Im Folgenden soll deswegen ein weitreichender Ausblick auf das Jahr 2050 gegeben werden. Zudem wird kurz noch darauf eingegangen, inwieweit nicht betrachtete Aspekte, wie z.B. Verhaltensänderung, eine Rolle für die ermittelten Potenziale spielen.

6.2.1 Ausblick 2050

Ein Ausblick in das Jahr 2050 wurde in der vorliegenden Studie nicht im Detail berechnet. Im Folgenden wird jedoch versucht, anhand der bis zum Jahr 2040 getroffenen Annahmen, einen Ausblick in das Jahr 2050 zu geben. Dabei wurde das Ausbauszenario EE-Plus für Erneuerbare Energien betrachtet, welches bei gleichzeitiger Umsetzung aller technischer und wirtschaftlicher Effizienzpotenziale (ZIEL-Szenario) umgesetzt wird.

Allerdings gilt es hier zu berücksichtigen, dass bereits viele Annahmen, welche aus bundesweiten Studien für das Jahr 2050 übernommen wurden, im ZIEL-Szenario (Energieeffizienz) EE-Plus (Erneuerbare Energien) weitestgehend ausgeschöpft wären, da hier ambitionierte Klimaschutzmaßnahmen umgesetzt worden wären. Dies bedeutet im Folgenden:

- Effizienz: Im Strombereich fänden sich aus heutiger Sicht über 2040 hinaus nur noch sehr wenige Potenziale, da alle heute bekannten Potenziale bereits ausgeschöpft wären. Im Wärmebereich wären aus heutiger Sicht im Industriebereich ohne Abwande-

34 Vgl. Exkurs im Anhang
runge keine weiteren Potenziale auszuschöpfen. Lediglich im Gewerbe und Haus-
haltsbereich könnte im Zeitraum zwischen 2040 und 2050 im Rahmen der Sanie-
runzungszyken weiterhin Energie eingespart werden. Im Verkehrs bereich wird von einer
weiteren moderaten effizienzbedingten Einsparung im Kraftstoffbereich ausgegan-
gen. Gleichzeitig wird die Elektromobilität in den Jahren 2040-2050 weiter ausgebaut
(50% mehr Stromverbrauch gegenüber 2040).

- Erneuerbare Energien: Es ist davon auszugehen, dass nach 2040 über die im Aus-
bau zenario EE-Plus berücksichtigten Anlagen bei Wind-, Wasser- und größere Bio-
masseanlagen hinaus, keine weiteren Potenziale erschlossen werden können. Ledig-
lich kleinere dezentrale Anlagen (Solarenergie, Wärmepumpe, Biomassekessel) kön-
nen weiter ausgebaut werden. Hier wiederum wäre in den verbleibenden 10 Jahren
mit geringerem Ausbauquoten, wie sie bis zum Jahr 2040 ermittelt wurden, zu rech-
nen, da der Ausbauschwerpunkt mit entsprechend hohen Ausbauquoten vor dem
Jahr 2040 lag.

Der Endenergieverbrauch im Biosphärengebiet läge, unter Berücksichtigung der Annahmen,
bei noch 54 % des Endenergiebedarfs des Ausgangsjahres (2.290 GWh). Im Biosphärenge-
biet würden dann noch 1.100 GWh Wärme, 790 GWh Strom (inkl. Verkehr) und 400 GWh
Kraftstoffe verbraucht werden. Diesen Verbräuchen stünden die Erzeugung mittels Erneuer-
barer Energien von knapp 800 GWh Wärme und etwa 1.165 GWh Strom gegenüber. Damit
könnten 86 % des Endenergiebedarfs bzw. 96 % des Primärenergiebedarfs durch Erneuer-
bare Energien gedeckt werden.

6.2.2 Relevanz nicht berücksichtiger Aspekte

Alle berechneten Potenziale wurden innerhalb der Region des Biosphärengebiets Schwäb-
sche Alb ermittelt. Es handelt sich dabei um technische Potenziale, die sich bei einem mäßig
steigenden Energiepreis wirtschaftlich gestalten. Verschiedene Aspekte wurden dabei aus-
geklammert:

- Der Ausbau der Offshore-Windkraft oder die Installation von solarthermischen Kraft-
werken wird von vielen Experten als wichtiges zukünftiges Standbein bei der nationa-
len Energieversorgung gesehen. Inwieweit importierter Solarstrom aus Spanien oder
Nordafrika Deutschland in einer regionalen Energiebilanz anzurechnen wäre, wird
noch Gegenstand kontroverser zukünftiger Diskussionen sein, da auch die anliegen-
den spanischen und nordafrikanischen Kommunen sich diesen Strom anrechnen las-
sen wollen. Anders gestaltet sich es bei der Offshore-Windkraft, die in deutschen
Küstengewässern steht. Der dort erzeugte Strom kann nicht direkt einer Kommune
or Region zugerechnet werden. Es existieren Ansätze, den dort gewonnen Strom
jedem Bundesbürger anteilig zuzurechnen. Im Falle des Biosphärengebiets könnten
der Region, sollten sich die Offshore Ausbauprog nosen der BMU-Leitstudie bestä-
gen, weitere 250 GWh an Strom hinzugerechnet werden.

- In der vorliegenden Studie wurden alle Aspekte bei den Potenzialen für Erneuerbare
Energien betrachtet, für die bereits Studien oder lokale Daten vorlagen, anhand derer
Potenziale abgeleitet werden konnten. Trotzdem konnten nicht alle lokalen Aspekte
und Potenziale Erneuerbarer Energien abgedeckt werden. Für einen Großteil dieser
Potenzialermittlung müssten Einzelfälle geprüft werden oder eigene Studien, welche
sich speziell auf die Region oder einzelne Standorte beziehen erstellt werden. Einige
Technologien wiederum zählen nicht direkt zu den Erneuerbaren Energien, können ein Energiesystem jedoch nachhaltig gestalten.

- **(Industrielle) Abwärmenutzung**

- **Innovative Nahwärmenutzungskonzepte**

- **Biogas-Einspeisung**

 Als weitere Möglichkeit der vollständigen Nutzung des Biogases besteht dessen Aufbereitung auf Erdgasqualität (Biomethan) und die Einspeisung ins Erdgasnetz. Hier gibt es noch weiteren Forschungsbedarf, inwieweit dies möglichst klimaschonend und mit geringerem Methanverlust geschehen kann.

- **Mikro-KWK**

 Systeme der Mikro-Kraft-Wärme-Kopplung sind Blockheizkraftwerke zur Versorgung einzelner Objekte mit einer elektrischen Leistung von typischerweise unter 15 kWel bzw. 25 kWel. Sie versorgen definitionsgemäß keine Nah- oder Fernwärmennetze mit Wärme, sondern stattdessen Gastätten, Hotels, Gewerbebetriebe, Mehrfamilienhäuser, etc.

- **Reststoffe**

 Die Nutzung von Reststoffen rückt immer stärker in den Fokus. Neben Lebensmittelsonden, können auch Abwasser (s.o.), Reststoffe aus Kleingärten, Straßenschnittgut und Landschaftspflegeholz (für die Region bereits eine Studie erfolgt) genutzt werden.
o Passive Solarnutzung

o Kaskadennutzung Holz

o Konventionelle effiziente Versorgung

o Speicherkraftwerke

- Ein weiterer Aspekt, welcher in der vorliegenden Studie nur im Verkehrsbereich ansatzweise berücksichtigt wurde, ist der Aspekt einer Verhaltensänderung der lokalen Energieverbraucher. Suffizienzansätze („ Weniger ist mehr“) sind in den letzten Jahren immer wieder untersucht worden (vgl. u.a. verschiedene Studien des Wuppertal Instituts), konnten sich aber weder auf privatwirtschaftlicher Ebene noch auf politischer Ebene in Form von Förderung oder gesetzlichen Regelungen durchsetzen. Erfahrungen aus dem Energiemanagement zeigen, dass mit einfachen Verhaltensänderungen häufig schon bis zu 10% Verbrauchsreduzierungen erzielt werden können. Da Verhaltensänderungen und Verzicht nicht automatisch mit dem Verlust von Lebensqualität verbunden sein müssen, gilt es weiter an diesen Ansätzen zu arbeiten, sie für Endverbraucher attraktiv zu gestalten und in die gesellschaftlichen Klimaschutzdebatten zu integrieren (vgl. Kap. 8).

7 Auswirkungen auf die regionale Wertschöpfung

Die mit Klimaschutz verbundenen Investitionen werden häufig lediglich als zusätzliche Kosten dargestellt, um ein ökologisches Ziel (CO₂-Minderung) zu erreichen. Vergessen wird bei dieser Sichtweise, dass mit der Umsetzung von Klimaschutzmaßnahmen direkte und indirekte Investitionen in ein nachhaltiges und vor allem lokal existierendes Wirtschaftssystem erbracht werden. So gesehen ist lokaler Klimaschutz auch eine regionale Wirtschaftsförderungs-, Struktur- und Energiepolitik.

Ein Beispiel für Klimaschutzinvestitionen zur Wirtschaftsförderung der jüngeren Vergangenheit ist das Konjunkturpaket II der Bundesregierung aus dem Jahre 2009. Im Rahmen der Umsetzung wurde ein erheblicher Anteil der bereitgestellten Gelder für Investitionen in (energetische) Sanierungen von kommunaler Infrastruktur verwendet. Dadurch konnten drei Ziele gleichzeitig erreicht werden:

1. Das Baugewerbe konnte vor dem Hintergrund drohender Umsatzausfälle mit zusätzlichen Aufträgen unterstützt werden.
2. Der Investitionsstau in Kommunen bei der Sanierung der eigenen Gebäude konnte verringert werden.
3. Durch die energetische Sanierung in den eigenen Gebäuden ist nicht nur der Wert der Gebäude gestiegen, es wurde auch eine Reduktion der zukünftigen kommunalen Energiekosten bewirkt.
Für den Bereich Erneuerbare Energien wird in Kapitel 7.4 aufgezeigt, welche Vorteile für verschiedene regionale Akteure mit einem Ausbau verbunden sind.

Neben den fiskalischen Effekten und positiven Auswirkungen für den Arbeitsmarkt, können die Aktivitäten noch weitere Auswirkungen haben, die, möchte man den Begriff Wertschöpfung nicht nur aus wirtschaftlicher Sicht betrachten, ebenfalls berücksichtigt werden müssten. Abbildung 7-1 zeigt hier weitere Effekte eines solchen für den Klimaschutz und wirtschaftlich sinnvollen Strukturwandels auf.

Abbildung 7-1: Effekte von Klimaschutzmaßnahmen auf die regionale Wirtschaft (ohne direkte Geldflüsse) nach DeENet 2009

7.1 Systematik bei der Ermittlung der regionalen Wertschöpfung

Die Effekte für die regionale Wertschöpfung werden auf drei Ebenen dargestellt:

1. Effekte von Energieeffizienzmaßnahmen für den Endverbraucher

 Der Wertschöpfungsrechner der Agentur für Erneuerbare Energien berechnet u.a. aufgrund absehbarer EEG-Vergütungen maximal bis zum Jahr 2020.
2. Effekte von Energieeffizienzmaßnahmen für regionale Anbieter

3. Effekte durch den Ausbau Erneuerbarer Energien

7.2 Energieeffizienz: Stärkung der regionalen Energieverbraucher

Die im Abschnitt zu den Energieeffizienzszeneri (vgl. Kap. 4.3.2) beschriebenen Einsparmöglichkeiten bis 2025 sind bereits heute für die verschiedenen Akteure technisch und vor allem wirtschaftlich umsetzbar. Abschreckend wirken derzeit vor allem Investitionskosten und Amortisationszeiten von bis zu 25 Jahren (bei einzelnen Gebäudeteilen). Die Gesamtkosten

36 Andere Annahmen werden im Kapitel speziell erwähnt
38 Mit dieser Annahme wird berücksichtigt, dass das Online-Tool maximal Entwicklungen bis 2020 darstellen kann.
über den gesamten Lebenszyklus eines Geräts oder Bauteils werden bei anstehenden Investitionsentscheidungen bisher aber kaum berücksichtigt.

Der Endkunde profitiert zudem bei verringertem Energieverbrauch von der damit verbundenen jährlichen Kosteneinsparung. Mit Blick auf eine Regionalisierung der Geldströme sorgen diese Einsparungen dafür, dass diese Gelder nicht für überwiegend konventionelle Energieträger (Heizöl, Erdgas) aus der Region abgezogen werden. Stattdessen verbleiben die dafür nötigen Investitionen in Effizienztechnologien sowie dazugehörige Dienstleistungen zu großen Teilen in der Region und tragen damit zur regionalen Wertschöpfung bei (vgl. Kap 7.3).

Gleichzeitig können absehbare Energiepreiserhöhungen durch Energieeinsparungen kompensiert werden. Abbildung 7-2 zeigt die Heizkostenentwicklung von Wohn- und Geschäftsgebäuden im Hinblick auf die beiden Energieverbrauchsszenarien (TREND und KLIMA) für das Jahr 2025 vor dem Hintergrund einer moderaten Energiepreissteigerung im Heizenergiebereich.

Ausgehend von Heizkosten im GHD- und Haushaltsbereich von knapp 90 Millionen Euro im Jahr 2008 können die Kosten im ungünstigsten Fall auf bis zu knapp 120 Millionen (bzw. +31 %) ansteigen. Grundlage ist dabei eine moderate Energiepreiserhöhung von 1,5 % pro Jahr und der Energieverbrauch der beiden Sektoren, der im TREND-Szenario bis 2025 berechnet wurde. Wird dagegen im KLIMA-Szenario die Sanierungsrate deutlich gesteigert und der Neubau in Passivhausbauweise errichtet, können die Ausgaben für Heizenergie bis 2025 trotz deutlich steigender Wohnfläche und steigender Energiepreise auf nahezu dem gleichen Niveau gehalten werden und steigen gegenüber dem Ausgangsjahr nur um 5 % bzw. ca. 4 Millionen Euro (bei 39 % absoluter Preissteigerung gegenüber dem Jahr 2008).

Entwicklungsoptionen bei den Heizkosten der privaten Haushalte und des Gewerbes bis 2025 für verschiedene Szenarien

<table>
<thead>
<tr>
<th>Energiekosten in Mio. €</th>
<th>2008</th>
<th>saniert nach TREND-Szenario (moderate Preissteigerung)</th>
<th>saniert nach KLIMA-Szenario (moderate Preissteigerung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td>+31%</td>
<td>+5%</td>
</tr>
</tbody>
</table>

Abbildung 7-2: Entwicklung der Heizkosten für die privaten Haushalte und Gewerbes in der Region Schwäbische Alb bis 2025 bei der Umsetzung verschiedener Szenarien
7.3 Energieeffizienz: Vorteile für regionale Anbieter

Umsatzsteigerungen durch Umsetzung aller Wärmepotenziale (KLIMA-Szenario 2025) in den Sektoren private Haushalte und GHD

<table>
<thead>
<tr>
<th>Umsatzsteigerung im Schnitt pro Jahr: 25 Mio. Euro</th>
<th>Entspricht ca. 250 Arbeitsplatzäquivalenten im regionalen Handwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überregionaler Umsatzanteil: 30%</td>
<td>Regionaler Umsatzanteil: 70%</td>
</tr>
</tbody>
</table>

Abbildung 7-3: Umsatzsteigerungen durch Umsetzung des KLIMA-Szenarios 2025

39 Dabei wurden im Grunde die gleichen Effizienzmaßnahmen und Technologien zu Grunde gelegt, wie sie im Abschnitt zu Effizienzpotenzialen in Kap. 4 berechnet wurden.
7.4 Regionale Wertschöpfung durch Erneuerbare Energien

Jährliche regionale Wertschöpfung durch Erneuerbare Energien im Biosphärengebiet Schwäbische Alb (bei Umsetzung des BUND-Szenarios)*

Abbildung 7-4: Regionale Wertschöpfung durch Erneuerbare Energien (BUND-Szenario)

7.5 Fazit: Klimaschutz ist regionale Wirtschaftsförderung

<table>
<thead>
<tr>
<th>Förderung der regionalen Wirtschaft durch Klimaschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärkung der Nachfrageseite</td>
</tr>
<tr>
<td>• Investition in öffentliche eigene Liegenschaften</td>
</tr>
<tr>
<td>• Förderung von Investitionen Dritter</td>
</tr>
<tr>
<td>Stärkung der Angebotsseite</td>
</tr>
<tr>
<td>• Förderung von Handwerk und regionalen Betrieben</td>
</tr>
<tr>
<td>• Förderung ökologischer Investments (Kreis, Kommunen, Betriebe, Bürger)</td>
</tr>
</tbody>
</table>

Abbildung 7-5: Mögliche Ansatzpunkte zur Wirtschaftsförderung durch die Umsetzung von Klimaschutzmaßnahmen

Die öffentlichen, aber auch die privaten Akteure in der Region des Biosphärengebiets haben dabei zwei Möglichkeiten, mit ihren Klimaschutzaktivitäten auch positive wirtschaftliche Effekte bei den Akteuren zu generieren: durch Stärkung der Nachfrage- oder der Angebotsseite (vgl. Abbildung 7-5). Dabei sind die direkten Möglichkeiten der Einflussnahme öffentlicher Stellen zwar begrenzt. Die Kommunen und Landkreise können aber als Informationsgeber,
Vernetzer und neutraler Moderator von Prozessen vielfach auch indirekt positiv auf das Verhalten Dritter Einfluss nehmen. Beispielhaft seien hier noch einmal zwei Punkte erläutert:

- Stärkung der Nachfrageseite:
 - Direkte Investitionen in die eigenen Liegenschaften garantieren den direkten Mittelzufluss an lokale Akteure.
 - Durch Informations- und Beratungsangebote wird die Nachfrage nach Klimaschutzdienstleistungen innerhalb der Kommune/des Landkreises verstärkt.

- Stärkung der Angebotsseite:
 - Unterstützung lokaler Betriebe bei der Auftragsbeschaffung, Fortbildung, Verbesserung der Rahmenbedingungen (z.B. Einführung eines regionalen Sanierungsstandards).
 - Beim Ausbau Erneuerbarer Energien können sowohl öffentliche Träger als auch jeder Bürger sein Geld in Beteiligungen an Erneuerbaren Energien anlegen und somit direkt deren Ausbau fördern.
8 Ausblick: Klimaschutz im Biosphärengebiet Schwäbische Alb

8.1 Klimaschutz als Teil einer nachhaltigen Entwicklung

- **Erneuerbare Energien**: Das Biosphärengebiet Schwäbische Alb auf regional erzeugte regenerative Energien unter Berücksichtigung der landschaftlichen Besonderheiten ausrichten
- **Innovationen**: Neue Techniken und Verfahren zur Energie-Gewinnung, -Speicherung, -Weiterleitung und effizienten Nutzung entwickeln und anwenden
- **Effizienz**: Effiziente Klimaschutz- und Energiesparmaßnahmen bei privaten und öffentlichen Gebäuden umsetzen
- **Kommunikation**: Umwelt- und Klimaschutz zum zentralen Thema der Region entwickeln
- **Kooperation**: Die Zusammenarbeit der Akteure stärken, Kooperationen fördern und transparente Prozesse schaffen

In diesem Entwicklungsleitbild des Arbeitskreises werden demnach bereits die wesentlichen Grundzüge einer nachhaltigen Energieversorgungsstruktur genannt. Mit dem Ziel des BUND, die Region bis 2040 zu 100% mit Erneuerbaren Energien zu versorgen, wurden diese Ziele nun auch mit einer quantitativen Komponente verknüpft, deren Umsetzbarkeit in diesem Bericht geprüft wurden. Mit der Aufnahme des Status quo (\(\text{CO}_2\)-Bilanz) sowie dem Ausblick in die Zukunft (Szenarien) sind also Ausgangspunkt und Ziele bekannt.

\(^{40}\) Die fünf Punkte sind ein Ausschnitt zum aktuellen Leitbildentwurf, welcher für das Rahmenkonzept des Biosphärengebiets vom Arbeitskreis Klima- und Umweltschutz entwickelt wurde. Das vollständige Dokument ist zu finden unter \(\text{http://www.biosphaerengebiet-alb.de/15-Rahmenkonzept.php}\)
Ein integriertes Klimaschutzkonzept für das Biosphärengebiet beinhaltet idealerweise nun auch den Weg, um diese formulierten Ziele zu erreichen. Wie bereits in der Einleitung beschrieben, sollten deswegen nun integrative Maßnahmen entwickelt und auf den Weg gebracht werden um die ermittelten Potenziale auch zu erreichen. Derzeit findet sich in der Region eine Vielzahl an Aktivitäten, die genau dies verfolgen (z.B. Klimaschutzkonzept Reutlingen, Klimaschutzkonzept des Regionalverband Neckar-Alb). Der Fokus der Konzepte liegt dabei auf Energieeinsparungskonzepten und Maßnahmen klimafreundlichen Energieversorgungskonzepten.41

8.2 Neue Ansätze für die Modellregion

Im Bereich Klimaschutz ist der Begriff Nachhaltigkeit häufig mit drei Ebenen verbunden, die im Idealfall auch in der folgenden Reihenfolge ablaufen:

1. Suffizienz beim Energieverbrauch (Wie kann durch Verhalten bzw. Konsum Energie eingespart werden?)
2. Effizienz beim Energieverbrauch (Wie kann der verbleibende Energieverbrauch möglichst effizient gestaltet werden?)
3. Klimafreundliche Energiebereitstellung (Erneuerbare Energien, KWK) (Wie kann, unter Berücksichtigung der beiden ersten Punkte der verbleibende Energiebedarf möglichst primärenergiesparend gedeckt werden?)

In der vorliegenden Studie zeigt sich jedoch, dass weder Effizienz noch Erneuerbare Energien alleine eine nachhaltige Energieversorgungsstruktur in der Region des Biosphärenge-41 Inhalte der vom BMU geförderten Klimaschutzkonzepte sind vor allem Maßnahmen für einen gerin-geren Energieverbrauch auf technischen Wege oder eine klimafreundlichere Energieversorgungsstruktur. Bewusstseinsbildende Maßnahmen spielen häufig eine eher unterordnete Rolle.
biets erreichen, um die Ziele einer 100%-Versorgung mit Erneuerbaren Energien zu erreichen. Auch deswegen sollte der Fokus eines Maßnahmenkatalogs für das Biosphärengebiet bei der im Grunde nachhaltigsten Weise des Klimaschutzes anfangen, der Energieeinsparung durch Verhaltensänderung.

Die Verantwortung des Einzelnen in seinem täglichen Wirken steht bei diesen Maßnahmen im Vordergrund. Es geht in einem solchen Maßnahmenkatalog also nicht mehr um die Ziele einer abstrakten Region, sondern man versucht, die Individuen zu einem nachhaltigen Handeln zu gewinnen. Drei Ebenen gilt es bei der Entwicklung eines solchen Maßnahmenkataloges zu berücksichtigen:

1. Zu Beginn einer Veränderung des Verbrauchsverhaltens steht die Bewusstseinsbildung, wie das Handeln des Einzelnen mit dem Gesamtziel Klimaschutz zusammenhängt. Die Diskrepanz zwischen dem Wissen um die Notwendigkeit und dem Unwissen, was der Einzelne tun kann, wird in verschiedenen Projekten bereits umgesetzt. So zeigen Beispiele aus privaten Haushalten, kommunalen Gebäuden und Schulen, dass ohne jegliche Nutzungs- oder Qualitätsminderung durch bewussteres Verhalten 10% der Energie eingespart werden kann.\(^{42}\)

\(^{42}\)Beispielhafte Maßnahmen wären hier z.B. Fifty-Fifty- Projekte, Stromsparwettbewerbe oder Energieerlasse für die Verwaltung.

\(^{43}\)http://www.klimaschutzplus.org
8.3 Das Biosphärengebiet als Klimaschutz-Suffizienzregion

- Entschleunigung (Reduktion der Konsumfrequenz)
- Eigenversorgung (Subsistenzwirtschaft des Selbermachens und Produzierens statt einer Kommodifizierung)
- Entflechtung (Vereinfachung und Regionalisierung von Wertschöpfungsketten)
- Entrümpelung (Reduktion der Anzahl und Vielfalt konsumierter/erworbenener Güter)

Suffizienz darf natürlich nicht erst beim Endverbraucher beginnen. Das in einigen Studien geforderte „Recht des Endnutzers auf Suffizienz“ beginnt bereits auf der Ebene der Technikentwickler und -hersteller, des Marketings, der Dienstleister und der Energielieferanten. Dort muss seitens der Politik im Grunde bereits Suffizienz verankert werden, um suffizientes Verhalten oder Suffizienzentscheidungen der Verbraucher zu unterstützen bzw. überhaupt erst zu ermöglichen: Es müssen Fernseher mit kleiner Bildfläche, Kühlgeräte mit geringem Volumen und ohne Bildschirm, Handys, die nur Telefone sind etc. überhaupt am Markt verfügbar sein und Verbraucher müssen darüber informiert werden. Hierin besteht eine Parallele zur Effizienz, bei der diese Anforderungen (Verfügbarkeit effizienter Geräte und Markttranspa-

Bei der Entwicklung von Maßnahmen im Biosphärengebiet für Endverbraucher ist das Konsum- und Nutzungsverhalten in verschiedenen klimaschutzrelevanten Lebensbereichen zu verankern. So könnten durch das Querschnittsthema Klimaschutz auch andere Nachhaltigkeitsziele des Biosphärengebiets erreicht werden. Folgende Themengebiete sind dabei denkbar (analog zum persönlichen CO₂-Rechner):

- Klimafreundlicher Konsum (z. B. Fokus von Langlebigkeit und Wiederverwertung, Angebote für Klimaschutzinvestitionen \(^{44}\) schaffen)
- Ernährung (Förderung von regionalen und saisonalen Lebensmitteln)
- Mobilität (Förderung von Carsharing und Mitfahrbörsen wie z. B. der „Rote Punkt“)
- Zu Hause (Entwicklung von innovativen Wohnkonzepten wie z. B. Mehrgenerationenhäusern und Schaffung von Energiedienstleistungsangeboten \(^{45}\))
- Öffentlicher Konsum (Thematisierung von Flächenverbrauch, Verankerung von Nachhaltigkeit und Klimaschutz als Themen im Bildungsbereich)

In einem Maßnahmenkatalog im Rahmen eines Klimaschutzkonzepts für das Biosphärengebiet könnten in einem integrativen Prozess mit den regionalen Akteuren Suffizienzmaßnahmen für die verschiedenen Bereiche entwickelt werden. Mit den Akteuren könnte dabei diskutiert werden, welche Möglichkeiten sie sehen, worauf aufgebaute werden könnte und wie die nicht konsum-orientierten Lebensqualitätsgewinne für einen größeren Empfängerkreis attraktiv gestaltet werden können. Neben den privaten Möglichkeiten sollten auch Vorschläge gemeinsam mit und für politische Gestalter (Kommunen, Landkreis etc.) entwickelt werden, inwieweit sie in ihrem Handeln Suffizienz als Klimaschutzthema etablieren könnten.

Klimaschutz als Querschnittsthema in allen Lebensbereichen könnte so einerseits als Bindeglied zwischen den verschiedenen Nachhaltigkeitszielen der Region und des Biosphärengebiets etabliert werden andererseits wäre eine solche „Modellregion für Suffizienz“ nicht nur ein Novum, sondern könnte als Vorbild für einen nachhaltigen Klimaschutz dienen.

\(^{44}\) Z.B. Bürgereinsparkraftwerke oder Klimaschutz+ Stiftung (http://www.klimaschutzplus.org)

\(^{45}\) Bei Energiedienstleistungen bezahlt der Kunde beim Fernsehen beispielsweise nicht mehr einzeln für das Gerät Fernseher und den Stromverbrauch bei der Nutzung, sonder für die „Dienstleistung Fernsehen“ als Paket.
9 Literaturverzeichnis

Regionalverband Neckar Alb (Hrsg.) (2012): Regionalplan – Planentwurf für die Beteiligung gemäß § 12 Abs. 2 und Abs. 3 sowie Abs. 5 Landesplanungsgesetz. Münsingen.

Umweltministerium Baden-Württemberg (Hrsg.): Ausbaupotenzial der Wasserkraft bis 1.000 kW im Einzugsgebiet des Neckars unter Berücksichtigung ökologischer Bewirtschaftungsziele.

EEG-Anlagedaten (http://www.transnetbw.de)
10 Anhang

10.1 Kurzübersicht Methodik Energie- und CO₂-Bilanz

Die Wahl der Bilanzierungsmethode und die verwendeten Daten können erheblichen Einfluss auf die Ergebnisse haben. Im Folgenden werden deshalb die der vorliegenden Bilanz zu Grunde liegenden Methoden erläutert.

Territorialbilanz „BUND“

Die Energie- und CO₂-Bilanzierung des IFEU für Kommunen/Regionen basiert auf dem Territorialprinzip. Demnach werden beispielsweise alle im Gebiet anfallenden Verbräuche auf Ebene der Endenergie (Energie, die z.B. am Hauszähler gemessen und verrechnet wird) bilanziert und den verschiedenen Verbrauchssektoren zugeordnet. Graue Energie (die z.B. in Produkten steckt) und Energie, die außerhalb der Region konsumiert wird (z.B. Hotelaufenthalte), wird nicht bilanziert\(^\text{46}\).

Auf Energieversorgungsseite (Bereitstellung von Strom und Wärme) werden für den Bereich Wärme ebenfalls alle Energiewandlungen in der Region berücksichtigt und fließen in die Bilanz ein. Bei der Bilanzierung des Stromverbrauchs in der Region des Biosphärengebiets werden für die Berechnung der CO₂-Emissionen die CO₂-Emissionsfaktoren des Bundesmixes übernommen.

Exkurs: „Strom aus der Steckdose“ bzw. die Frage nach dem Strommix

Die Nutzung von Strom durch den Endverbraucher ist ohne direkte lokale CO₂-Emissionen verbunden. Unter Berücksichtigung der Vorkette werden der Nutzung jedoch die CO₂-Emissionen zugeordnet, die mit Hilfe eines CO₂-Emissionsfaktors (g CO₂/kWh Endenergie) und des Gesamtstromverbrauchs ermittelt wird. Welcher Emissionsfaktor letztendlich genutzt wird, ist die Frage, was man dem Ergebnis darstellen möchte.

- Für kommunale und regionale CO₂-Bilanzen bietet sich vor allem der Emissionsfaktor an, der auf dem bundesdeutschen Strommix (Strommix BUND) basiert. Physikalisch ist dies zudem am korrektesten, da es im Netz keine Qualitätsunterschiede zwischen Öko- oder Kohlestrom gibt. Lokal erzeugter Strom wird zwar vor Ort eingespeist, aber deutschland-/europaweit genutzt. Es können also keine Rückschlüsse gezogen werden, wer den in der Region erzeugten Strom letztendlich nutzt.
- Parallel kann ein regionaler Strommix (Strommix REGIO) ermittelt werden, mit Hilfe dessen die lokal Aktivitäten der Energieversorger und der lokalen Akteure dargestellt werden können.

Vorkette

Zur Berechnung der CO₂-Emissionen werden, neben den direkten Emissionen bei der Umwandlung der Energie in der Region, auch die Emissionen der Vorkette einberechnet. So sind auch die Emissionen für die Förderung, den Transport und die Umwandlung außerhalb der Region enthalten. Die einzelnen Faktoren stammen aus dem GEMIS-Datensatz und den Berechnungen des IFEU Heidelberg (UMBERTO- und ecoinvent Daten).

Äquivalente Emissionen

Vorgehen und Methodik im Verkehr

Eine Bilanz des Energieverbrauchs und der Treibhausgasemissionen im motorisierten Verkehr im Biosphärengebiet Schwäbische Alb wurde auf der Basis der Verkehrsmengen (Fahr-

Ermittlung von Fahr- und Verkehrsleistungen

Räumliche Abgrenzung und Differenzierung

Für die Emissionsbilanz bedarf es einer schlüssigen Definition, welche Verkehre (Fahr- und Verkehrsleistungen) unmittelbar dem Biosphärengebiet Schwäbische Alb zuzuordnen sind.

Diese räumliche Abgrenzung nach dem Territorialprinzip wurde auch für das Biosphärengebiet Schwäbische Alb gewählt. Für Kommunen, die nicht vollständig innerhalb des Biosphärengebiets liegen, wurden die Verkehre anteilig über die Bevölkerungsanteile innerhalb des Gebiets zugeordnet.

Eine Territorialbilanz bildet zunächst den gesamten Verkehr in einem Gebiet ab, jedoch ohne Differenzierung nach den Verursachern der Verkehrsstrome. Um die kommunalen Handlungsmöglichkeiten darzustellen, sollten die Verkehre zusätzlich nach Verkehrsarten differenziert werden:

- **Binnenverkehr**: Zielgruppen: Bürger, z.T. Unternehmen. Vollständig im Handlungsbereich der kommunalen Akteure.

Eine solche Differenzierung ist zudem eine wichtige Unterstützung für die Ermittlung von Emissionsminderungspotenzialen durch verkehrliche Maßnahmen.

Verkehrsmittel

Es wurden folgende Verkehrsmittel im Personen- und Güterverkehr berücksichtigt:

- Motorisierter Individualverkehr (MIV) mit Pkw und Zweirädern,
Öffentlicher Personennahverkehr (ÖPNV) mit Bussen sowie Schienenpersonennahverkehr (SPNV),

• Straßengüterverkehr mit Leichten Nutzfahrzeugen (<3,5t) und Lkw (>3,5t).

Mit der anteiligen Berücksichtigung des Durchgangsverkehrs ist in der Bilanz auch ein Teil Pkw- und Lkw-Fernverkehr enthalten. Schienenpersonenfernverkehr sowie Gütertransporte mit der Bahn werden in der Bilanz nicht abgebildet.\footnote{Im Personenfernverkehr sowie im Schienengüterverkehr stehen einem hohen Aufwand, regionale Zahlen zu ermitteln, nur geringe Emissionsbeiträge und kaum kommunale Handlungsmöglichkeiten gegenüber.}

Fahr- und Verkehrsleistungen

Im regionalen Schienenverkehr erfolgte die Berechnung von Energieverbrauch und Emissionen auf Basis der angebotenen Verkehrsleistungen. Zunächst wurden jährliche Fahrleistungen (Zug-km) über die Streckenlängen der verschiedenen Bahnlinien im Biosphärengebiet und die Takthäufigkeit berechnet. Anschließend wurde das mittlere Platzangebot pro Zug anhand der üblicherweise auf einer Linie eingesetzten Fahrzeugtypen (Baureihen) abgeschätzt und darüber die angebotene Verkehrsleistung (Platz-km) berechnet. Zusätzlich wurde unter Berücksichtigung der Fahrzeugtypen auch die Aufteilung zwischen Diesel- und Elektrotraktion abgeschätzt.

Ergänzend zu den für die Emissionsberechnung notwendigen Verkehrsparametern wurden im Personenverkehr auch Verkehrsleistungen abgeschätzt und der Modal-Split im motorisierten Personenverkehr bestimmt. Da keine regionalen Informationen vorlagen, wurden die Verkehrsleistungen mittels bundesdurchschnittlicher Auslastungsgrade (Personen pro Pkw bzw. Zug) abgeschätzt. Im Straßengüterverkehr wurden keine Verkehrsleistungen berechnet, da kein Vergleich mit anderen Verkehrsträgern (Schiene, Binnenschiff) erfolgt.

Datengrundlage der Emissionsfaktoren

Emissionsfaktoren: In der hier erstellten Territorialbilanz für das Biosphärengebiet Schwäbische Alb wurden aktuelle fahr- und verkehrsleistungsspezifische Kraftstoffverbrauchs- und Emissionsfaktoren aus dem Modell TREMOD\footnote{Das Emissionsberechnungsmodell TREMOD (Transport Emission Model) bildet den motorisierten Verkehr in Deutschland hinsichtlich seiner Verkehrs- und Fahrleistungen, Energieverbräuche und zugehörigen Emissionen für den Zeitraum 1960-2030 ab. TREMOD wird vom IFEU-Institut im Auftrag des Umweltbundesamtes und in Kooperation mit u. a. VDA, Deutsche Bahn AG und VDV erstellt und fortlauend aktualisiert. TREMOD ist Grundlage für alle diesbezüglichen Berechnungen der Bundesregierung und Basis der offiziellen Berichterstattung (Kyoto-Protokoll, NEC-Protokoll).} verwendet. In TREMOD wird der durchschnittliche technische Stand der Fahrzeugflotte in Deutschland im jeweiligen Bezugsjahr sowie der Einfluss von Geschwindigkeit und Fahrsituation (z. B. Innerortsstraßen, Außerortsstraßen, Autobahn) berücksichtigt. Weiterhin sind Randbedingungen wie die CO$_2$-
Minderungsziele der Europäischen Kommission, die Zunahme des Anteils von Diesel-Pkw, Beimischung von Biokraftstoffen etc. berücksichtigt.

Energetische Vorkette: Für die vollständige Ermittlung der mit Verkehrsaktivitäten verbundenen Treibhausgasemissionen wurden neben den direkten Emissionen der Fahrzeuge im Fahrbetrieb auch die Aufwendungen zur Energiebereitstellung (von Rohenergiegewinnung bis zur Aufbereitung und Umwandlung in Raffinerien und Kraftwerken) einbezogen. Im elektrischen Schienenverkehr entstehen die Treibhausgasemissionen ausschließlich in der energetischen Vorkette. Ohne Berücksichtigung der Vorkette ist weder ein Vergleich zwischen verschiedenen Energieträgern (Benzin, Diesel, Strom) noch eine Ermittlung von Emissions-Einsparpotenzialen durch Verkehrsverlagerungen zwischen verschiedenen Verkehrsmitteln möglich.

Verwendung von CO₂-Äquivalenten: Klimarelevante Emissionen im Verkehr entstehen fast vollständig als Kohlendioxid (CO₂). In geringem Umfang werden auch Methan (CH₄) und Distickstoffoxid (N₂O) emittiert. Die Angaben von Treibhausgasemissionen des Verkehrs im Biosphärengebiet beziehen sich in diesem Bericht analog zu den stationären Sektoren stets auf CO₂-Äquivalente, sie berücksichtigen alle drei Klimagase und bei CH₄ und N₂O zusätzlich die höhere spezifische Klimawirksamkeit.
10.2 Zusatzbetrachtung für den Verkehrsbereich

Regionaler Berufsverkehr der Einwohner des Biosphärengebiets

Von den 53.200 sozialversicherungspflichtig beschäftigten Einwohnern des Biosphärengebiets im Jahr 2009 arbeiteten 27 % in ihrem Wohnort, die übrigen 73 % pendelten zu einer anderen Gemeinde. Weitere Informationen zu den Pendelbeziehungen, insbesondere welcher Anteil der Berufspendler in einem Arbeitsort außerhalb des Biosphärengebiets beschäftigt war sowie zu außerhalb des Gebiets wohnenden Einpendlern, konnten im Rahmen des Projekts nicht ermittelt werden.

Fazit: Auch bei Verwendung abweichender Annahmen zur mittleren Weglänge oder zum Modal-Split-Anteil des MIV am Berufsverkehr ergibt sich aus der Abschätzung ein erheblicher Anteil des Berufsverkehrs am gesamten motorisierten Individualverkehr im Biosphärengebiet und damit eine entsprechende Relevanz für emissionsmindernde Maßnahmen.

An- und Abreise von Besuchern des Biosphärengebiets

- Bei innerdeutschen Urlaubsfahrten fuhren 70 % der in MiD 2008 Befragten hauptsächlich mit dem Pkw, dieser war im Durchschnitt mit je 2,3 bis 2,4 Personen besetzt.

Unter der zusätzlichen, vereinfachten Annahme einer mittleren Weglänge von Fahrten innerhalb des Biosphärengbiets von 20 km (entspricht etwa der Entfernung von der Gemeindestandorten der Touristen)

50 Angaben des Statistischen Landesamtes, anteilige Berücksichtigung der Beschäftigtenzahlen für Gemeinden, die nur teilweise im Biosphärengebiet liegen, analog zur Zurechnung der Bevölkerungsanzahl.

51 Im Falle überwiegender Pendelbeziehungen zwischen Gemeinden innerhalb des Biosphärengebiets könnten die Weglängen und Verkehrsleistungen tendenziell kürzer sein. Aktuelle Mobilitätsbefragungen (MiD 2008) ergaben allerdings insb. bei Einwohnern von Gemeinden <20.000 Einwohner mittlere Weglängen im Berufsverkehr von meist mehr als 20 km, so dass auch für das Biosphärengebiet ein größerer Anteil Auspendler angenommen werden kann.

52 Die anteilige Zurechnung der Touristenanzahl von Gemeinden, die nur teilweise im Biosphärengebiet liegen, erfolgte analog zur Zurechnung der Bevölkerungsanzahl.

An den gesamten MIV-Fahrleistungen pro Jahr im Biosphärengebiet (933 Mio. Fahrzeug-km im Jahr 2009) hätten nach dieser stark vereinfachten Abschätzung demnach die Besucheranreisen und -abreisen nur einen Anteil von ca. 0,2%. Hinzu kommen noch Fahrten der Besucher innerhalb des Biosphärengebiets, für die aufgrund der Datenlage keine Abschätzung möglich ist. Insgesamt erscheint es aber plausibel, dass die im Biosphärengebiet übernachtenden Besucher deutlich weniger als ein Prozent zum gesamten motorisierten Individualverkehr beitragen.
10.3 Annahmen Flächen

Tabelle 10-1: Gemeinden im Biosphärengebiet nach Landkreisen

<table>
<thead>
<tr>
<th>Gemeindedaten</th>
<th>Anteil am BG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Bad Urach</td>
</tr>
<tr>
<td></td>
<td>Dettingen/Erns</td>
</tr>
<tr>
<td></td>
<td>Eningen unter Achalm</td>
</tr>
<tr>
<td></td>
<td>Gomadingen</td>
</tr>
<tr>
<td></td>
<td>Grabenstetten</td>
</tr>
<tr>
<td></td>
<td>Gutsbez. Münsingen</td>
</tr>
<tr>
<td></td>
<td>Hayingen</td>
</tr>
<tr>
<td></td>
<td>Hülben</td>
</tr>
<tr>
<td></td>
<td>Lichtenstein</td>
</tr>
<tr>
<td></td>
<td>Metzingen</td>
</tr>
<tr>
<td></td>
<td>Münsingen</td>
</tr>
<tr>
<td></td>
<td>Pfullingen</td>
</tr>
<tr>
<td></td>
<td>Reutlingen</td>
</tr>
<tr>
<td></td>
<td>Römerstein</td>
</tr>
<tr>
<td></td>
<td>Sankt Johann</td>
</tr>
<tr>
<td></td>
<td>Zwiefalten</td>
</tr>
<tr>
<td>Landkreis Reutlingen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ehingen (Donau)</td>
</tr>
<tr>
<td></td>
<td>Lauterach</td>
</tr>
<tr>
<td></td>
<td>Schelklingen</td>
</tr>
<tr>
<td></td>
<td>Westerheim</td>
</tr>
<tr>
<td>Alb-Donau-Kreis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beuren</td>
</tr>
<tr>
<td></td>
<td>Bissingen a.d.Tleck</td>
</tr>
<tr>
<td></td>
<td>Dettingen unter Teck</td>
</tr>
<tr>
<td></td>
<td>Erkenbrechtsweiler</td>
</tr>
<tr>
<td></td>
<td>Kohlberg</td>
</tr>
<tr>
<td></td>
<td>Lenningen</td>
</tr>
<tr>
<td></td>
<td>Neidlingen</td>
</tr>
<tr>
<td></td>
<td>Neuffen</td>
</tr>
<tr>
<td></td>
<td>Owen</td>
</tr>
<tr>
<td></td>
<td>Weilheim a.d.Tleck</td>
</tr>
<tr>
<td>Landkreis Esslingen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt Biosphärengebiet</td>
</tr>
</tbody>
</table>
Tabelle 10-2: Berechnungsschlüssel für einzelne Flächen der Gemeinden des Biosphärengebiets (nach Hage/Hoppenstedt)

<table>
<thead>
<tr>
<th>Gemeinde</th>
<th>Anteil BG an Gesamtfläche [%]</th>
<th>Siedlungs-Schlüssel [%]</th>
<th>Gewerbe-Schlüssel [%]</th>
<th>Bebauungs-Schlüssel [%]</th>
<th>LaWi-Schlüssel [%]</th>
<th>Wald-Schlüssel [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Urach</td>
<td>99,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>98,4</td>
</tr>
<tr>
<td>Beuren</td>
<td>95,2</td>
<td>98,9</td>
<td>100,0</td>
<td>99,1</td>
<td>94,6</td>
<td>94,8</td>
</tr>
<tr>
<td>Bissingen a.d. Teck</td>
<td>73,5</td>
<td>26,8</td>
<td>4,4</td>
<td>23,2</td>
<td>63,1</td>
<td>100,0</td>
</tr>
<tr>
<td>Dettingen a. Erms</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Dettingen unter Teck</td>
<td>1,4</td>
<td>0,2</td>
<td>0,0</td>
<td>0,1</td>
<td>2,3</td>
<td>0,2</td>
</tr>
<tr>
<td>Ehingen (Donau)</td>
<td>33,8</td>
<td>14,2</td>
<td>2,1</td>
<td>10,9</td>
<td>27,6</td>
<td>39,3</td>
</tr>
<tr>
<td>Enningen unter Achalm</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Erkenbrechtsweiler</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Gomadingen</td>
<td>84,5</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>96,0</td>
<td>74,0</td>
</tr>
<tr>
<td>Grabenstetten</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Gutsbez. Münsingen</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Hayingen</td>
<td>95,4</td>
<td>97,1</td>
<td>100,0</td>
<td>97,3</td>
<td>94,7</td>
<td>95,9</td>
</tr>
<tr>
<td>Hüllben</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Kohlberg</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Lauterach</td>
<td>92,2</td>
<td>99,0</td>
<td>100,0</td>
<td>99,0</td>
<td>83,8</td>
<td>99,4</td>
</tr>
<tr>
<td>Lenningen</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Lichtenstein</td>
<td>7,3</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,4</td>
<td>10,6</td>
</tr>
<tr>
<td>Metzingen</td>
<td>80,2</td>
<td>98,9</td>
<td>97,9</td>
<td>98,6</td>
<td>84,1</td>
<td>64,2</td>
</tr>
<tr>
<td>Münsingen</td>
<td>98,5</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>99,9</td>
<td>95,3</td>
</tr>
<tr>
<td>Neidlingen</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Neuffen</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Owen</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Pfüllingen</td>
<td>99,9</td>
<td>100,0</td>
<td>99,1</td>
<td>99,7</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Reutlingen</td>
<td>17,5</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>7,4</td>
<td>55,1</td>
</tr>
<tr>
<td>Römerstein</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Sankt Johann</td>
<td>44,3</td>
<td>50,7</td>
<td>46,6</td>
<td>50,2</td>
<td>50,9</td>
<td>36,2</td>
</tr>
<tr>
<td>Schelklingen</td>
<td>82,2</td>
<td>95,0</td>
<td>20,6</td>
<td>72,6</td>
<td>88,2</td>
<td>79,3</td>
</tr>
<tr>
<td>Weilheim a.d. Teck</td>
<td>59,3</td>
<td>17,1</td>
<td>4,7</td>
<td>13,1</td>
<td>53,1</td>
<td>99,5</td>
</tr>
<tr>
<td>Westerheim</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Zwiefalten</td>
<td>44,1</td>
<td>79,4</td>
<td>87,3</td>
<td>80,8</td>
<td>51,3</td>
<td>36,1</td>
</tr>
</tbody>
</table>
10.4 Detailergebnisse Bilanz

Tabelle 10-3: Endenergiebilanz 2008 für das Biosphärengebiet Schwäbische Alb nach Energieträgern und Sektoren (in GWh), witterungskorrigiert

<table>
<thead>
<tr>
<th></th>
<th>Strom</th>
<th>Erdgas</th>
<th>Heizöl</th>
<th>Erneuerbare (Wärme)</th>
<th>Sonstige</th>
<th>Wärme (Industrie)</th>
<th>Kraftstoffe</th>
<th>Gesamt*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Haushalte</td>
<td>293</td>
<td>589</td>
<td>551</td>
<td>192</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1.527</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>198</td>
<td>189</td>
<td>152</td>
<td>42</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>581</td>
</tr>
<tr>
<td>Industrie</td>
<td>537</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>724</td>
<td>-</td>
<td>-</td>
<td>1.261</td>
</tr>
<tr>
<td>Verkehr</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>776</td>
<td>-</td>
<td>797</td>
</tr>
<tr>
<td>Gesamt*</td>
<td>1.049</td>
<td>678</td>
<td>702</td>
<td>235</td>
<td>2</td>
<td>724</td>
<td>776</td>
<td>4.166</td>
</tr>
</tbody>
</table>

* Nicht korrekte Summen aufgrund von Auf- und Abrundungen bei den Einzelwerten

<table>
<thead>
<tr>
<th></th>
<th>Strom</th>
<th>Erdgas</th>
<th>Heizöl</th>
<th>Erneuerbare (Wärme)</th>
<th>Sonstige</th>
<th>Wärme (Industrie)</th>
<th>Kraftstoffe</th>
<th>Gesamt*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Haushalte</td>
<td>182</td>
<td>123</td>
<td>176</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>484</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>123</td>
<td>47</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>220</td>
</tr>
<tr>
<td>Industrie</td>
<td>334</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>195</td>
<td>-</td>
<td>540</td>
</tr>
<tr>
<td>Verkehr</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>234</td>
<td>241</td>
</tr>
<tr>
<td>Gesamt*</td>
<td>647</td>
<td>170</td>
<td>224</td>
<td>3</td>
<td>1</td>
<td>195</td>
<td>234</td>
<td>1.475</td>
</tr>
</tbody>
</table>

* Nicht korrekte Summen aufgrund von Auf- und Abrundungen bei den Einzelwerten
10.5 Sanierungszyklen im KLIMA-Szenario

Tabelle 10-5: Sanierungszyklen für einzelne Bauteile bei privaten Haushalten

<table>
<thead>
<tr>
<th>Sanierungszyklus (a)</th>
<th>10.5</th>
<th>10.6</th>
</tr>
</thead>
</table>

53 Explorative Szenarien (z. B. anhand von Zubauraten) wurden für einzelne Energieträger im Biosphärengebiet gesondert erstellt und anschließend mit den Ziel-Szenarien aus 100prosim abgeglichen.

Abbildung 10-1: Funktionsweise von 100prosim
100%EE-Region

Landkreis Goslar (25.1.11.b)

<table>
<thead>
<tr>
<th>Energie</th>
<th>Fläche (ha)</th>
<th>Quelle</th>
<th>Technologie</th>
<th>Status</th>
<th>Ziel</th>
<th>Wärmeprod. MWh/ha</th>
<th>Status</th>
<th>Ziel</th>
<th>Deckungsbedarf kWh/ha</th>
<th>Status</th>
<th>Ziel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarzelle</td>
<td>450</td>
<td>Solarzelle</td>
<td>Flachkollekt.</td>
<td>10</td>
<td>30</td>
<td>3.584</td>
<td>8</td>
<td>482</td>
<td>15,4</td>
<td>15,4</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>237</td>
<td>Wind</td>
<td>Strom</td>
<td>72</td>
<td>70</td>
<td>1.173</td>
<td>8</td>
<td>353</td>
<td>11,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laufwasser</td>
<td>80,995</td>
<td>Laufwasser</td>
<td>Wasser-Kraftwerk</td>
<td>67</td>
<td>87</td>
<td>0,37</td>
<td>24</td>
<td>24</td>
<td>8,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holz</td>
<td>44,72</td>
<td>Holz</td>
<td>Ofen, Kessel</td>
<td>40</td>
<td>48</td>
<td>12,1</td>
<td>258</td>
<td>258</td>
<td>8,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kraftwerk</td>
<td>15</td>
<td>15</td>
<td>4,1</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verfassung</td>
<td>0</td>
<td>0</td>
<td>8,8</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroh</td>
<td>14,401</td>
<td>Stroh</td>
<td>Kessel</td>
<td>0</td>
<td>25</td>
<td>12,1</td>
<td>54</td>
<td>54</td>
<td>8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kraftwerk</td>
<td>0</td>
<td>0</td>
<td>4,1</td>
<td>7,0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verfassung</td>
<td>0</td>
<td>0</td>
<td>10,1</td>
<td>11,1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiepflanze</td>
<td>3,333</td>
<td>Energiepflanze</td>
<td>Biogas direkt</td>
<td>0</td>
<td>100</td>
<td>41,6</td>
<td>67</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biogas SHK</td>
<td>100</td>
<td>0</td>
<td>12,5</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Angaben in % vom Verbrauchs niveau 2007 in Sektoren Haushalte & GHD & Industrie (2.998 GWh = 100%)

Diagramm

Abbildung 10-2: Ausschnitte aus 100prosim
10.7 Annahmen für den Ausbau Erneuerbare Energien

10.7.1 Solarenergie

Quellen
- 100prosim (Schmidt-Kanefendt 2011)
- EEG-Anlagendaten, www.transnetbw.de (für Ausbauraten)
- www.solaratlas.de (für Ausbauraten)
- Potenzialstudie Erneuerbare Energien in Metzingen des Arbeitskreis Klima und Energie Metzingen (2005)
- Roland Berger/Prognos 2010

BUND-Position
- Photovoltaik:
 - Der BUND fordert den massiven Ausbau der Photovoltaik, da diese in einem zukünftigen Energiemix einen wesentlichen Beitrag leisten kann.
 - Der Anwendung der Photovoltaik an und auf Gebäuden ist den Vorzug zu geben.
 - PV-Freiflächenanlagen werden als derzeit nötiger Bestandteil der Umstellung auf eine regenerative Energieversorgung grundsätzlich befürwortet. Dabei sollten jedoch verschiedene Restriktionen beachtet werden (vgl. BUND 2010).

Solarthermie:
- Eine Ausstattung von Wohngebäuden mit mindestens 1-2 qm Solarkollektoren pro Person für Heizungsunterstützung und Warmwasser sollte in den nächsten 30 Jahren erreicht sein.

Grundannahmen für alle Szenarien
- Maximal 4% der Gebäude- und Freiflächen (insgesamt 4.311 ha) sind für eine solare Nutzung geeignet. Dies entspricht im Biosphärengebiet Schwäbische Alb etwa 172 ha.
- Solarthermische Anlagen werden ausschließlich auf Dachflächen installiert (nicht auf Freiflächen).
- Wärmeabnahme-Maximum für Solarthermie im Biosphärengebiet von 150 GWh

<table>
<thead>
<tr>
<th>einzelne Szenarien</th>
<th>Szenario Basis</th>
<th>Szenario EE-Plus</th>
<th>Szenario BUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annahmen Photovoltaik</td>
<td>keine Freiflächenanlagen wegen Nutzungskonkurrenz mittlere Zubaurate wie 2005/2006</td>
<td>einige Freiflächenanlagen (1,6%) hohe/maximale Zubaurate wie 2008-2010</td>
<td>wenige Freiflächenanlagen (0,5% der Gebäude- und Freiflächen = 22 ha) hohe Zubaurate wie 2008-2010</td>
</tr>
<tr>
<td>Annahmen Solarthermie</td>
<td>doppelte Zubaurate der letzten 10 Jahre</td>
<td>dreifache Zubaurate der letzten 10 Jahre</td>
<td>dreifache Zubaurate der letzten 10 Jahre</td>
</tr>
</tbody>
</table>

10.7.2 Windkraft

Quellen
- Regionalplan Neckar-Alb 2012 (Planentwurf für die Beteiligung gemäß § 12 Abs. 2 und Abs. 3 sowie Abs. 5 Landesplanungsgesetz)
- Erste Einschätzungen des Landratsamtes Reutlingen aus Naturschutzsicht (Steckbriefe)
- Windenergiegutachten Region Donau Iller (Planungsbüro Prof. Jörg Schaller)
- Konzept zur Fortschreibung des Kapitels Windenergie im Regionalplan Donau Iller (Stand Oktober 2011)

BUND-Position
- Klimaschutz und Schutz der Biologischen Vielfalt gleichrangige Ziele → Unterstützung des energiepolitischen Ziels der Landesregierung

Grundannahmen für alle Szenarien:
- Nur Flächen mit mehr als 5,5 m/s Durchschnittsgeschwindigkeit in 100 m Höhe
- Berücksichtigte Abstandsflächen (entnommen aus der Untersuchung des Regionalverbandes Neckar Alb)

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Abstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzgebiete, Krankenhäuser, Pflegeanstalten</td>
<td>1.000m</td>
</tr>
<tr>
<td>Allgemeine Wohngebiete</td>
<td>700m</td>
</tr>
<tr>
<td>Misch-, Dorf- und Kerngebiete</td>
<td>500m</td>
</tr>
<tr>
<td>Wohnenutzte Einzelhäuser im Außenbereich</td>
<td>500m</td>
</tr>
<tr>
<td>Gewerbegebiete (ohne Industriegebiete)</td>
<td>300m</td>
</tr>
<tr>
<td>Sonderlandeplätze, Segelfluggelände</td>
<td>3.100m, 2.000m/2.100m</td>
</tr>
<tr>
<td>Naturschutzgebiete</td>
<td>200m</td>
</tr>
</tbody>
</table>

Überregional bis international bedeutsame Zugkorridore (besonders geschützter Vogelarten, insbes. Limikolen, Wasservögel und weitere Großvögel) (nur Zugkorridor vor dem Albtrauf)	800m-Korridor
Nachweislicher Brutplatz und Lebensraum (Revier) besonders geschützter und störungsempfindlicher Vogelarten, insbesondere größere Offenlandarten (Nur Rotmilan, Uhu, Wanderfalke)	1.000m/2.000m
Bann- und Schonwald	200m
Kernzone Biosphäreengebiet Schwäbische Alb	200m
Binnen- und Fließgewässser	10m
Vorranggebiet für den Abbau oberflächennaher Rohstoffe, Vorranggebiet zur Sicherung von Rohstoffen	300m
Flächen für Ver- und Entsorgung (FNP)	-
Grün- und Erholungsflächen (FNP)	-
Bauschutzbereich von Flughäfen	-
Biotope nach §30 NatSchG / NatSchG (ab einer Größe von 5 ha)	-
EU-Vogelschutzgebiete mit hoher Empfindlichkeit gegenüber WKA	-
FFH-Gebiete, sofern die Erhaltungs- und Entwicklungsziele des jeweiligen Gebiets erheblich beeinträchtigt werden können	-
Waldbiotope nach §30a LWaldG / §30 BNatSchG	-
Wasserschutzgebiete Zone I	-
Grabungsschutzgebiet	-
Sonderfläche Bund	-
Militärische Nachtteiflugstrecken	-
Weitere Militärische Ausschussflächen	-

Positionen zur Sichtbarkeit der Windkraftanlagen: Eine abschließende Prüfung in Hinblick auf die Sichtbarkeit der Anlagen und eine damit einhergehende Beeinflussung des Landschaftsbildes über das vom Land vorgegebene Kriterien ist nicht durchgeführt worden. Eine Beeinträchtigung des Landschaftsbildes muss im Einzelfall diskutiert werden. Bei der Einzelfallprüfung wurden im Regionalplan des Regionalverbandes Neckar-Alb bezüglich der visuellen Beeinträchtigung von Kultur-/Baudenkmalzonen von 300 m (vorhabenbezogene Analyse), 2.500 m...
Biosphärengebiet Schwäbische Alb

IFEU

(vorhabenübergreifende Analyse) und 5.000 m (nur VRG Windkraftanlagen) angenommen.\(^5\)

<table>
<thead>
<tr>
<th>Positionen zu Naturschutz und anderen Aspekten</th>
<th>Szenario Basis</th>
<th>Szenario EE-Plus</th>
<th>BUND-Szenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kritische Auseinandersetzung mit der Erschließung (Waldflächen, Privatbesitz, Wirtschaftlichkeit). Im Zweifel wurde in diesem Szenario die Nicht-Erstellung von Anlagen angenommen.</td>
<td>• Alle Anlagen, welche in den zu aktualisierenden Regionalplänen vorgeschlagen können in diesem Szenario errichtet werden. Planerisch werden alle Kriterien (Abstandsflächen) eingehalten.</td>
<td>• Berücksichtige Aspekte (Tabu-Gebiete für WEA):</td>
<td></td>
</tr>
<tr>
<td>• Naturschutz: Sind artenschutzrechtliche Konflikte aus heutiger Sicht nicht auszuschließen, wird angenommen, dass die Anlagen nicht errichtet werden bzw. nur in sehr begrenztem Maße (mit Ausgleichsmaßnahmen und Abschaltungen etc.)</td>
<td>• Aspekte, wie militärische Nutzung und Vogelzug sind in ersten Untersuchungen bereits berücksichtigt (s.u.)</td>
<td>• Naturschutzgebiete</td>
<td></td>
</tr>
<tr>
<td>• Bei militärischen Einschränkungen (z.B. Nächtlliche Tiefflugzonen) wird angenommen, dass die Anlage mit Höhe und Nutzung nicht wirtschaftlich sind.</td>
<td>• Eingeflossene Untersuchungen:</td>
<td>• Bann- und Schonwälder, Kernzonen von Biosphärengebieten und Nationalparks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ASP-Daten der LUBW, Daten aus vorliegenden Managementplänen von Natura 2000-Gebieten,</td>
<td>• Naturnahe Waldbestände mit zahlreichen Baumindividuen über 120 Jahre sowie extensiv bewirtschaftete Waldflächen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Horstbaum- und Höhenbaumkartierungen von Sikora im Biosphärengebiet Schwäbische Alb</td>
<td>• International und national bedeutende Zugvogelkorridore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Konfliktanalyse von Vorranggebieten für den Ausbau der Windkraftanlagen aus Sicht des Vogelzugs im Biosphärengebiet Schwäbische Alb</td>
<td>• Bedeutende Lebens-, Nahrungs- und Fortpflanzungsstätten von europäisch streng geschützten und potenziell durch WKAs gefährdeten Vogel- und Fledermausarten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vorranggebiete für den Naturschutz (Vorrang für gefährdete Vogel- und Fledermausbestände vor der Windkraft bei der Flächenwahl). In diesen Fällen werden in Fällen mit mittleren Konfliktpotenzial Minimierungs- (Reduktion der Anlagezahl in der Fläche) und/oder CEF-Maßnahmen angesetzt. In Flächen mit mittleren-hohen Konfliktpotenzial werden keine Windkraftanlagen errichtet.</td>
<td>• Vorranggebiete für den Naturschutz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kartierung der Brutstätten von Uhu und Schmerzpunktgebiete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^5\) Folgende Positionen des BUND konnten nicht näher untersucht: Keine WKA in der unmittelbaren Nähe von Gewässern (Schlagopfer), Tendenziell Bau in der Nähe von Siedlungen, Verkehrsstraßen, Sportanlagen (unter Berücksichtigung der erforderlichen Mindestabstände), Schonung unberührter Landschaften, Aussparung einzelner windhöflicher Standorte zum Schutz der Landschaft
Wanderfalke der AG Wanderfalkenschutz
- Pufferstreifen um ein Vogelschutzgebiet. Gemäß Windenergieerlass Baden-Württemberg (Entwurf vom 23.12.2011) ist von Europäischen Vogelschutzgebieten mit Vorkommen windkraftempfindlicher Arten, insbesondere solcher Arten, für die Windkraftanlagen Gefahrenquellen darstellen, ein Abstand von in der Regel 1.000 m einzuhalten. Sofern im Einzelfall eine erhebliche Beeinträchtigung des jeweiligen Schutzzwecks und der geschützten Arten ausgeschlossen werden kann, kann eine Planung innerhalb des genannten Abstands erfolgen
- windkraftsensibler europäisch streng geschützter Vogelarten (Rotmilan)
- EU-Vogelschutzgebiete: Ausbau nur, wenn günstiger Erhaltungszustand der zu schützenden Vogelarten nicht gefährdet wird
- Waldrefugien des Alt- und Totholzkonzepts → Mindestabstand einhalten
- Flächenhafte Naturdenkmale
- Besonders geschützte Biotope
- Landesweit bedeutsame Lebensräume von Fleidermäusen (und Überwinterungsquartermieten)
- Zugvogelkorridore von landesweiter Bedeutung von Vögeln und Fleidermausen

10.7.3 Wasserkraft

<table>
<thead>
<tr>
<th>Quellen/ Planungsgrundlage</th>
<th>Wasserkraftnutzung in der Region Neckar-Alb (Hrsg. Regionalverband Neckar Alb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ausbaupotenziale der Wasserkraft bis 1.000 kW im Einzugsgebiet des Neckars unter Berücksichtigung ökologischer Bewirtschaftungsziele (Hrsg. Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg)</td>
</tr>
<tr>
<td>BUND-Position</td>
<td>ökologisch verträglicher Umbau und Ausbau der Wasserkraft</td>
</tr>
<tr>
<td></td>
<td>Neubau nur in Ausnahmefällen und nur wenn keine Konflikte mit dem Verschlechterungsverbot der WRRL oder der Lachsprogrammgewässer zu befürchten sind</td>
</tr>
<tr>
<td></td>
<td>Modernisierung und ökologische Verbesserung der bestehenden Wasserkraftanlagen (z.B. neue Turbinentypen)</td>
</tr>
<tr>
<td></td>
<td>Wiederinbetriebnahme und Reaktivierung ehemaliger Wasserkraftanlagen</td>
</tr>
<tr>
<td>Berücksichtigte Rahmenbedingungen (in den Studien)</td>
<td>Gesetz über die Umweltverträglichkeitsprüfung (UVPG)</td>
</tr>
<tr>
<td></td>
<td>Bundes-Immissionsschutzgesetz (BImSchG)</td>
</tr>
<tr>
<td></td>
<td>Wasserhaushaltsgesetz (WHG)</td>
</tr>
<tr>
<td></td>
<td>Bundesnaturschutzgesetz (BNatSchG)</td>
</tr>
<tr>
<td></td>
<td>Erneuerbare-Energien-Gesetz (EEG)</td>
</tr>
<tr>
<td></td>
<td>Landeswassergesetz (LWG)</td>
</tr>
<tr>
<td></td>
<td>Landesnaturschutzgesetz (NatSchG)</td>
</tr>
<tr>
<td>Biosphärengebiet Schwäbische Alb</td>
<td>IFEU</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
</tbody>
</table>

- Fischereigesetz (FischG)
- Gemeinsame Verwaltungsvorschrift des Umweltministeriums, des Ministeriums für Ernährung und Ländlichen Raum und des Wirtschaftsministeriums zur gesamtkritischen Beurteilung der Wasserkraftnutzung; Kriterien für die Zulassung von Wasserkraftanlagen bis 1.000 kW

Annahmen für einzelne Szenarien

<table>
<thead>
<tr>
<th>Szenario Basis</th>
<th>Szenario EE-Plus</th>
<th>Szenario BUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modernisierung bestehender Anlagen</td>
<td>Modernisierung bestehender Anlagen</td>
<td>Modernisierung und ökologische Verbesserung der bestehenden Wasserkraftanlagen</td>
</tr>
<tr>
<td>Revitalisierung</td>
<td>Neubau von Kleinstanlagen</td>
<td>Wiederinbetriebnahme und Reaktivierung ehemaliger Wasserkraftanlagen</td>
</tr>
<tr>
<td>Neubau von Kleinstanlagen</td>
<td></td>
<td>Neubau nur in Ausnahmefällen</td>
</tr>
</tbody>
</table>

10.7.4 Biomasse

Quelle/ Studie/ Planungsgrundlage

- 100prosim
- Flächendaten des statistischen Landesamtes
- Ermittlung des Potenzials energetisch nutzbarer Resthölzer aus der Land- schaftspflege im PLENUM- und Biosphärengebiet Schwäbische Alb (HS Rottenburg)

BUND-Position

- Der Anbau von Lebens- und Futtermitteln hat Vorrang vor Energiepflanzen.
- Biomasseanbau nur ohne Gentechnik und mit 100% ökologischen Anbaumethoden.
- Förderung der Biodiversität durch Diversifizierung der Ackerpflanzen nötig (Wildpflanzenmischungen statt Mais und Raps)
- Kein Import von Agrarrohstoffen (Ausnahme Grenzregion Frankreich/Schweiz)
- Ausbaupotentiale für Anbau-Biomasse nur auf freier Enden der Ackerflächen
- Einhaltung weiterer Nachhaltigkeitsstandards für die Agroenergie

Grundlagen für alle Szenarien

- Keine Berücksichtigung von Biotop-Grünland. (z.B. durch ordnungsrechtliche Sicherung des FFH- und sonstigen Biotop-Grünlandes (z.B. Ausweisung Naturschutzgebiete)
- Keine „theoretischen“ Importe von biogenen Energieträgern (Ausnahme Grenzregion Frankreich/Schweiz)
- Abschaffung der Beimischungspflicht Kraftstoffe (E 10)

Annahmen für einzelne Szenarien

<table>
<thead>
<tr>
<th>Szenario Basis</th>
<th>Szenario EE-Plus</th>
<th>Szenario BUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konservativer Ansatz bei Anbauflächen Schwerpunkt Nahrungsmittelerzeugung (Max. 10% der Land-)</td>
<td>Energie-fokussierter Ansatz für Anbau landwirtschaftlicher Flächen (30%)</td>
<td>Anbau von Energiepflanzen (Mais, Raps) hat bereits Agrarland- schaft nachteilig verändert. Eine Diversifi-</td>
</tr>
</tbody>
</table>
wirtschaftlichen Flächen für Energiepflanzen

- Thermische Holznutzung: 20% des Zuwachses, Stromerzeugung durch Holz: 10% des Zuwachses. Entspricht 50% der heutigen Biomassenutzung und wird als Zielwert in 100 pro SIM empfohlen. Hier wird die Notwendigkeit einer Ablösung der petrochemischen Produkte durch solche auf Biomasse-Basis durch eine lang andauernde Vorrang für stoffliche Holznutzung führen.
- Konservative Annahmen bei der Strohnutzung. Stroh wird als Nährstofflieferant und andere Nutzung (Stall) benötigt und kann keiner zusätzlichen Verwendung zugeführt werden.
- Strohnutzung: nach IFEU 2009 im Schnitt etwa 30% des verbleibenden Strohs für energetische Anwendung nutzbar
- Ansonsten keine weitere Intensivierung der Nutzung von Wald-(rest)holz zur Verbrennung

10.7.5 Geothermie

Tiefe Geothermie

| Quellen | Machbarkeitsstudie für ein HDR-Wärme- und Stromnutzungskonzept in Bad Urach von HYDRO-DATA (2009), |

55 Nachhaltige Biomassenutzungsformen wie die energetische Nutzung von Reststoffen, wie im BUND Paper empfohlen (Gülle, Mist, Grün- Bio- und Haushaltsabfälle) wird, wurden aufgrund mangelnder lokaler Datenbasis nicht betrachtet.
Biosphärengebiet Schwäbische Alb

BUND-Position

- Der BUND spricht sich für die Nutzung von tiefer Geothermie als Grundlast aus.
- Die Geothermie bietet ein hohes Energiepotenzial, doch es zu nutzen ist sehr aufwändig, teuer und die Bohrrisiken sind erheblich. Deshalb sollten derartige Projekte durch Zuschüsse und Bohrbürgschaften gefördert werden.

Grundannahmen in allen Szenarien

- Da die Technologie aus heutiger Sicht noch nicht bzw. in dieser Größenordnung erprobt ist, werden die damit verbundenen Potenziale in Klammern gesetzt.

<table>
<thead>
<tr>
<th>Annahmen für einzelne Szenarien</th>
<th>Szenario Basis</th>
<th>Szenario EE-Plus</th>
<th>Szenario BUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine tiefe Geothermie, da unter Berücksichtigung der Regenerationsfähigkeit der Erdwärme eine wirtschaftlich Nutzung der Tiefengeothermie nicht erreicht werden kann</td>
<td></td>
<td>3 Tiefengeothermie-Kraftwerke: in Bad Urach und an zwei weiteren Standorten finanzielle Förderung der Anlagen, sinkende Bohrkosten, steigende Energiepreise</td>
<td>wie Szenario EE-Plus</td>
</tr>
</tbody>
</table>

Oberflächennahe Geothermie

Quellen

- Informationssystem für oberflächennahe Geothermie (ISONG) des Landesamtes für Geologie, Rohstoffe und Bergbau in Baden-Württemberg
- Hydrologischen Kriterien zur Anlage von Erdwärmesonden in Baden-Württemberg
- 100prosim
- BMU (Hrsg.) (2011): Erneuerbare Energien – Innovationen für eine nachhaltige Energiezukunft
- Potenziale zur Nutzung Oberflächennaher Geothermie mit Erdwärmesonden in der Region Donau-Iller des Regionalverbands Donau-Iller
- Potenzialstudie Erneuerbare Energien in Metzingen des Arbeitskreis Klima und Energie Metzingen (2005)
- Statistisches Landesamt Baden-Württemberg → Neubautätigkeit

BUND-Position

- Wärmepumpen erst oberhalb einer Arbeitszahl von 4,0 einsetzen (Erdreichwärmepumpen, Nutzung von Abwärme aus Abwasser oder Abluft aus Wohnräumen).
- Der Einsatz von Wärmepumpen ist nur sinnvoll, wenn die Gesamtenergiebilanz deutlich verbessert wird, besonders durch die Nutzung von Abwärme.
- Abgelehnt wird der Einsatz von Wärmepumpen, die nur die energetische Ineffizienz von Großkraftwerken ausgleichen bzw. deren vermehrter Einsatz einen erhöhten Bedarf an Kohle- oder Atomstrom nach sich zieht.
Grundannahmen in allen Szenarien
- Es wurden nur Potenziale für Erdwärmesonden berechnet.
- Bau von Erdwärmesonden nur in Gebieten, in denen geologischen und wasserrechtlichen Gegebenheiten vor Ort den Bau von Erdwärmesonden zulassen (nach ISONG)

<table>
<thead>
<tr>
<th>Annahmen für einzelne Szenarien</th>
<th>Szenario Basis</th>
<th>Szenario EE-Plus</th>
<th>Szenario BUND</th>
</tr>
</thead>
</table>
10.8 Tabellen: Detailergebnisse EE

<table>
<thead>
<tr>
<th>Szenario Basis</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wärme (GWh)</td>
</tr>
<tr>
<td>Windkraft</td>
<td>156</td>
</tr>
<tr>
<td>Biomasse</td>
<td>196</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>17</td>
</tr>
<tr>
<td>Solarenergie</td>
<td>106</td>
</tr>
<tr>
<td>Tiefengeothermie</td>
<td>0</td>
</tr>
<tr>
<td>Geothermie (oberflächennah)</td>
<td>18</td>
</tr>
<tr>
<td>Summe</td>
<td>320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Szenario BUND</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wärme (GWh)</td>
</tr>
<tr>
<td>Windkraft</td>
<td>300</td>
</tr>
<tr>
<td>Biomasse</td>
<td>253</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>22</td>
</tr>
<tr>
<td>Solarenergie</td>
<td>150</td>
</tr>
<tr>
<td>Tiefengeothermie</td>
<td>(238)</td>
</tr>
<tr>
<td>Geothermie (oberflächennah)</td>
<td>35</td>
</tr>
<tr>
<td>Summe</td>
<td>438-676</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Szenario EE-Plus</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wärme (GWh)</td>
</tr>
<tr>
<td>Windkraft</td>
<td>640</td>
</tr>
<tr>
<td>Biomasse</td>
<td>311</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>30</td>
</tr>
<tr>
<td>Solarenergie</td>
<td>149</td>
</tr>
<tr>
<td>Tiefengeothermie</td>
<td>(238)</td>
</tr>
<tr>
<td>Geothermie (oberflächennah)</td>
<td>76</td>
</tr>
<tr>
<td>Summe</td>
<td>537-775</td>
</tr>
</tbody>
</table>

* Aufgrund von Effizienzkriterien wurden Biokraftstoffe in dieser Studie nicht weiter betrachtet.